
SSH
Copyright © 2005-2022 Ericsson AB. All Rights Reserved.

SSH 4.15.1
December 14, 2022

Copyright © 2005-2022 Ericsson AB. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance
with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless
required by applicable law or agreed to in writing, software distributed under the License is distributed on an
"AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See
the License for the specific language governing permissions and limitations under the License. Ericsson AB. All
Rights Reserved..

December 14, 2022

1.1 Introduction

1 SSH User's Guide

The Erlang Secure Shell (SSH) application, ssh, implements the SSH Transport Layer Protocol and provides SSH
File Transfer Protocol (SFTP) clients and servers.

1.1 Introduction
SSH is a protocol for secure remote logon and other secure network services over an insecure network.

1.1.1 Scope and Purpose
SSH provides a single, full-duplex, and byte-oriented connection between client and server. The protocol also provides
privacy, integrity, server authentication, and man-in-the-middle protection.

The ssh application is an implementation of the SSH Transport, Connection and Authentication Layer Protocols in
Erlang. It provides the following:

• API functions to write customized SSH clients and servers applications

• The Erlang shell available over SSH

• An SFTP client (ssh_sftp) and server (ssh_sftpd)

1.1.2 Prerequisites
It is assumed that the reader is familiar with the Erlang programming language, concepts of OTP, and has a basic
understanding of public keys.

1.1.3 SSH Protocol Overview
Conceptually, the SSH protocol can be partitioned into four layers:

Figure 1.1: SSH Protocol Architecture

Ericsson AB. All Rights Reserved.: SSH | 1

1.1 Introduction

Transport Protocol
The SSH Transport Protocol is a secure, low-level transport. It provides strong encryption, cryptographic host
authentication, and integrity protection. A minimum of Message Authentication Code (MAC) and encryption
algorithms are supported. For details, see the ssh(3) manual page in ssh.

Authentication Protocol
The SSH Authentication Protocol is a general-purpose user authentication protocol run over the SSH Transport Layer
Protocol. The ssh application supports user authentication as follows:

• Using public key technology. RSA and DSA, X509-certificates are not supported.

• Using keyboard-interactive authentication. This is suitable for interactive authentication methods that do
not need any special software support on the client side. Instead, all authentication data is entered from the
keyboard.

• Using a pure password-based authentication scheme. Here, the plain text password is encrypted before sent over
the network.

Several configuration options for authentication handling are available in ssh:connect/[3,4] and ssh:daemon/[2,3].

The public key handling can be customized by implementing the following behaviours from ssh:

• Module ssh_client_key_api.

• Module ssh_server_key_api.

Connection Protocol
The SSH Connection Protocol provides application-support services over the transport pipe, for example, channel
multiplexing, flow control, remote program execution, signal propagation, and connection forwarding. Functions for
handling the SSH Connection Protocol can be found in the module ssh_connection in ssh.

Channels
All terminal sessions, forwarded connections, and so on, are channels. Multiple channels are multiplexed into a single
connection. All channels are flow-controlled. This means that no data is sent to a channel peer until a message is
received to indicate that window space is available. The initial window size specifies how many bytes of channel data
that can be sent to the channel peer without adjusting the window. Typically, an SSH client opens a channel, sends
data (commands), receives data (control information), and then closes the channel. The ssh_client_channel behaviour
handles generic parts of SSH channel management. This makes it easy to write your own SSH client/server processes
that use flow-control and thus opens for more focus on the application logic.

Channels come in the following three flavors:

• Subsystem - Named services that can be run as part of an SSH server, such as SFTP (ssh_sftpd), that is built
into the SSH daemon (server) by default, but it can be disabled. The Erlang ssh daemon can be configured to
run any Erlang- implemented SSH subsystem.

• Shell - Interactive shell. By default the Erlang daemon runs the Erlang shell. The shell can be customized
by providing your own read-eval-print loop. You can also provide your own Command-Line Interface (CLI)
implementation, but that is much more work.

• Exec - One-time remote execution of commands. See function ssh_connection:exec/4 for more information.

1.1.4 Where to Find More Information
For detailed information about the SSH protocol, refer to the following Request for Comments(RFCs):

• RFC 4250 - Protocol Assigned Numbers

• RFC 4251 - Protocol Architecture

• RFC 4252 - Authentication Protocol

2 | Ericsson AB. All Rights Reserved.: SSH

href
href
href

1.2 Getting Started

• RFC 4253 - Transport Layer Protocol

• RFC 4254 - Connection Protocol

• RFC 4344 - Transport Layer Encryption Modes

• RFC 4716 - Public Key File Format

1.2 Getting Started
1.2.1 General Information
The following examples use the utility function ssh:start/0 to start all needed applications (crypto, public_key,
and ssh). All examples are run in an Erlang shell, or in a bash shell, using openssh to illustrate how the ssh application
can be used. The examples are run as the user otptest on a local network where the user is authorized to log in
over ssh to the host tarlop.

If nothing else is stated, it is presumed that the otptest user has an entry in the authorized_keys file of tarlop
(allowed to log in over ssh without entering a password). Also, tarlop is a known host in the known_hosts file of
the user otptest. This means that host-verification can be done without user-interaction.

1.2.2 Using the Erlang ssh Terminal Client
The user otptest, which has bash as default shell, uses the ssh:shell/1 client to connect to the openssh daemon
running on a host called tarlop:

1> ssh:start().
ok
2> {ok, S} = ssh:shell("tarlop").
otptest@tarlop:> pwd
/home/otptest
otptest@tarlop:> exit
logout
3>

1.2.3 Running an Erlang ssh Daemon
The system_dir option must be a directory containing a host key file and it defaults to /etc/ssh. For details,
see Section Configuration Files in ssh(6).

Note:

Normally, the /etc/ssh directory is only readable by root.

The option user_dir defaults to directory users ~/.ssh.

Step 1. To run the example without root privileges, generate new keys and host keys:

$bash> ssh-keygen -t rsa -f /tmp/ssh_daemon/ssh_host_rsa_key
[...]
$bash> ssh-keygen -t rsa -f /tmp/otptest_user/.ssh/id_rsa
[...]

Step 2. Create the file /tmp/otptest_user/.ssh/authorized_keys and add the content of /tmp/
otptest_user/.ssh/id_rsa.pub.

Step 3. Start the Erlang ssh daemon:

Ericsson AB. All Rights Reserved.: SSH | 3

href
href
href
href

1.2 Getting Started

1> ssh:start().
ok
2> {ok, Sshd} = ssh:daemon(8989, [{system_dir, "/tmp/ssh_daemon"},
 {user_dir, "/tmp/otptest_user/.ssh"}]).
{ok,<0.54.0>}
3>

Step 4. Use the openssh client from a shell to connect to the Erlang ssh daemon:

$bash> ssh tarlop -p 8989 -i /tmp/otptest_user/.ssh/id_rsa \
 -o UserKnownHostsFile=/tmp/otptest_user/.ssh/known_hosts
The authenticity of host 'tarlop' can't be established.
RSA key fingerprint is 14:81:80:50:b1:1f:57:dd:93:a8:2d:2f:dd:90:ae:a8.
Are you sure you want to continue connecting (yes/no)? yes
Warning: Permanently added 'tarlop' (RSA) to the list of known hosts.
Eshell V5.10 (abort with ^G)
1>

There are two ways of shutting down an ssh daemon, see Step 5a and Step 5b.

Step 5a. Shut down the Erlang ssh daemon so that it stops the listener but leaves existing connections, started by
the listener, operational:

3> ssh:stop_listener(Sshd).
ok
4>

Step 5b. Shut down the Erlang ssh daemon so that it stops the listener and all connections started by the listener:

3> ssh:stop_daemon(Sshd).
ok
4>

1.2.4 One-Time Execution
Erlang client contacting OS standard ssh server
In the following example, the Erlang shell is the client process that receives the channel replies as Erlang messages.

Do an one-time execution of a remote OS command ("pwd") over ssh to the ssh server of the OS at the host "tarlop":

1> ssh:start().
ok
2> {ok, ConnectionRef} = ssh:connect("tarlop", 22, []).
{ok,<0.57.0>}
3> {ok, ChannelId} = ssh_connection:session_channel(ConnectionRef, infinity).
{ok,0}
4> success = ssh_connection:exec(ConnectionRef, ChannelId, "pwd", infinity).
5> flush(). % Get all pending messages. NOTE: ordering may vary!
Shell got {ssh_cm,<0.57.0>,{data,0,0,<<"/home/otptest\n">>}}
Shell got {ssh_cm,<0.57.0>,{eof,0}}
Shell got {ssh_cm,<0.57.0>,{exit_status,0,0}}
Shell got {ssh_cm,<0.57.0>,{closed,0}}
ok
6> ssh:connection_info(ConnectionRef, channels).
{channels,[]}
7>

4 | Ericsson AB. All Rights Reserved.: SSH

1.2 Getting Started

See ssh_connection and ssh_connection:exec/4 for finding documentation of the channel messages.

To collect the channel messages in a program, use receive...end instead of flush/1:

5> receive
5> {ssh_cm, ConnectionRef, {data, ChannelId, Type, Result}} when Type == 0 ->
5> {ok,Result}
5> {ssh_cm, ConnectionRef, {data, ChannelId, Type, Result}} when Type == 1 ->
5> {error,Result}
5> end.
{ok,<<"/home/otptest\n">>}
6>

Note that only the exec channel is closed after the one-time execution. The connection is still up and can handle
previously opened channels. It is also possible to open a new channel:

% try to open a new channel to check if the ConnectionRef is still open
7> {ok, NewChannelId} = ssh_connection:session_channel(ConnectionRef, infinity).
{ok,1}
8>

To close the connection, call the function ssh:close(ConnectionRef). As an alternative, set the option
{idle_time, 1} when opening the connection. This will cause the connection to be closed automatically when
there are no channels open for the specified time period, in this case 1 ms.

OS standard client and Erlang daemon (server)
An Erlang SSH daemon could be called for one-time execution of a "command". The "command" must be as if entered
into the erlang shell, that is a sequence of Erlang expressions ended by a period (.). Variables bound in that sequence
will keep their bindings throughout the expression sequence. The bindings are disposed when the result is returned.

Here is an example of a suitable expression sequence:

A=1, B=2, 3 == (A + B).

It evaluates to true if submitted to the Erlang daemon started in Step 3 above:

$bash> ssh tarlop -p 8989 "A=1, B=2, 3 == (A + B)."
true
$bash>

The same example but now using the Erlang ssh client to contact the Erlang server:

1> {ok, ConnectionRef} = ssh:connect("tarlop", 8989, []).
{ok,<0.216.0>}
2> {ok, ChannelId} = ssh_connection:session_channel(ConnectionRef, infinity).
{ok,0}
3> success = ssh_connection:exec(ConnectionRef, ChannelId,
 "A=1, B=2, 3 == (A + B).",
 infinity).
success
4> flush().
Shell got {ssh_cm,<0.216.0>,{data,0,0,<<"true">>}}
Shell got {ssh_cm,<0.216.0>,{exit_status,0,0}}
Shell got {ssh_cm,<0.216.0>,{eof,0}}
Shell got {ssh_cm,<0.216.0>,{closed,0}}
ok
5>

Ericsson AB. All Rights Reserved.: SSH | 5

1.2 Getting Started

Note that Erlang shell specific functions and control sequences like for example h(). are not supported.

I/O from a function called in an Erlang ssh daemon
Output to stdout on the server side is also displayed as well as the resulting term from the function call:

$bash> ssh tarlop -p 8989 'io:format("Hello!~n~nHow are ~p?~n",[you]).'
Hello!

How are you?
ok
$bash>

And similar for reading from stdin. As an example we use io:read/1 which displays the argument as a prompt on stdout,
reads a term from stdin and returns it in an ok-tuple:

$bash> ssh tarlop -p 8989 'io:read("write something: ").'
write something: [a,b,c].
{ok,[a,b,c]}
$bash>

The same example but using the Erlang ssh client:

Eshell V10.5.2 (abort with ^G)
1> ssh:start().
ok
2> {ok, ConnectionRef} = ssh:connect(loopback, 8989, []).
{ok,<0.92.0>}
3> {ok, ChannelId} = ssh_connection:session_channel(ConnectionRef, infinity).
{ok,0}
4> success = ssh_connection:exec(ConnectionRef, ChannelId,
 "io:read(\"write something: \").",
 infinity).
success
5> flush().
Shell got {ssh_cm,<0.92.0>,{data,0,0,<<"write something: ">>}}
ok
% All data is sent as binaries with string contents:
6> ok = ssh_connection:send(ConnectionRef, ChannelId, <<"[a,b,c].">>).
ok
7> flush().
ok
%% Nothing is received, because the io:read/1
%% requires the input line to end with a newline.

%% Send a newline (it could have been included in the last send):
8> ssh_connection:send(ConnectionRef, ChannelId, <<"\n">>).
ok
9> flush().
Shell got {ssh_cm,<0.92.0>,{data,0,0,<<"{ok,[a,b,c]}">>}}
Shell got {ssh_cm,<0.92.0>,{exit_status,0,0}}
Shell got {ssh_cm,<0.92.0>,{eof,0}}
Shell got {ssh_cm,<0.92.0>,{closed,0}}
ok
10>

Configuring the server's (daemon's) command execution
Every time a daemon is started, it enables one-time execution of commands as described in the previous section unless
explicitly disabled.

6 | Ericsson AB. All Rights Reserved.: SSH

1.2 Getting Started

There is often a need to configure some other exec evaluator to tailor the input language or restrict the possible
functions to call. There are two ways of doing this which will be shown with examples below. See ssh:daemon/2,3
and exec_daemon_option()) for details.

Examples of the two ways to configure the exec evaluator:

• Disable one-time execution.
To modify the daemon start example above to reject one-time execution requests, we change Step 3 by adding
the option {exec, disabled} to:

1> ssh:start().
ok
2> {ok, Sshd} = ssh:daemon(8989, [{system_dir, "/tmp/ssh_daemon"},
 {user_dir, "/tmp/otptest_user/.ssh"},
 {exec, disabled}
]).
{ok,<0.54.0>}
3>

A call to that daemon will return the text "Prohibited." on stderr (depending on the client and OS), and the exit
status 255:

$bash> ssh tarlop -p 8989 "test."
Prohibited.
$bash> echo $?
255
$bash>

And the Erlang client library also returns the text "Prohibited." on data type 1 instead of the normal 0 and exit
status 255:

2> {ok, ConnectionRef} = ssh:connect(loopback, 8989, []).
{ok,<0.92.0>}
3> {ok, ChannelId} = ssh_connection:session_channel(ConnectionRef, infinity).
{ok,0}
4> success = ssh_connection:exec(ConnectionRef, ChannelId, "test."
success
5> flush().
Shell got {ssh_cm,<0.106.0>,{data,0,1,<<"Prohibited.">>}}
Shell got {ssh_cm,<0.106.0>,{exit_status,0,255}}
Shell got {ssh_cm,<0.106.0>,{eof,0}}
Shell got {ssh_cm,<0.106.0>,{closed,0}}
ok
6>

Ericsson AB. All Rights Reserved.: SSH | 7

1.2 Getting Started

• Install an alternative evaluator.
Start the damon with a reference to a fun() that handles the evaluation:

1> ssh:start().
ok
2> MyEvaluator = fun("1") -> {ok, some_value};
 ("2") -> {ok, some_other_value};
 ("3") -> {ok, V} = io:read("input erlang term>> "),
 {ok, V};
 (Err) -> {error,{bad_input,Err}}
 end.
3> {ok, Sshd} = ssh:daemon(1234, [{system_dir, "/tmp/ssh_daemon"},
 {user_dir, "/tmp/otptest_user/.ssh"},
 {exec, {direct,MyEvaluator}}
]).
{ok,<0.275.0>}
4>

and call it:

$bash> ssh localhost -p 1234 1
some_value
$bash> ssh localhost -p 1234 2
some_other_value
I/O works:
$bash> ssh localhost -p 1234 3
input erlang term>> abc.
abc
Check that Erlang evaluation is disabled:
$bash> ssh localhost -p 1234 1+ 2.
Error {bad_input,"1+ 2."}
$bash>

Note that spaces are preserved and that no point (.) is needed at the end - that was required by the default
evaluator.

The error return in the Erlang client (The text as data type 1 and exit_status 255):

2> {ok, ConnectionRef} = ssh:connect(loopback, 1234, []).
{ok,<0.92.0>}
3> {ok, ChannelId} = ssh_connection:session_channel(ConnectionRef, infinity).
{ok,0}
4> success = ssh_connection:exec(ConnectionRef, ChannelId, "1+ 2.").
success
5> flush().
Shell got {ssh_cm,<0.106.0>,{data,0,1,<<"**Error** {bad_input,\"1+ 2.\"}">>}}
Shell got {ssh_cm,<0.106.0>,{exit_status,0,255}}
Shell got {ssh_cm,<0.106.0>,{eof,0}}
Shell got {ssh_cm,<0.106.0>,{closed,0}}
ok
6>

The fun() in the exec option could take up to three arguments (Cmd, User and ClientAddress). See the
exec_daemon_option() for the details.

8 | Ericsson AB. All Rights Reserved.: SSH

1.2 Getting Started

Note:

An old, discouraged and undocumented way of installing an alternative evaluator exists.

It still works, but lacks for example I/O possibility. It is because of that compatibility we need the {direct,...}
construction.

1.2.5 SFTP Server
Start the Erlang ssh daemon with the SFTP subsystem:

1> ssh:start().
ok
2> ssh:daemon(8989, [{system_dir, "/tmp/ssh_daemon"},
 {user_dir, "/tmp/otptest_user/.ssh"},
 {subsystems, [ssh_sftpd:subsystem_spec(
 [{cwd, "/tmp/sftp/example"}])
]}]).
{ok,<0.54.0>}
3>

Run the OpenSSH SFTP client:

$bash> sftp -oPort=8989 -o IdentityFile=/tmp/otptest_user/.ssh/id_rsa \
 -o UserKnownHostsFile=/tmp/otptest_user/.ssh/known_hosts tarlop
Connecting to tarlop...
sftp> pwd
Remote working directory: /tmp/sftp/example
sftp>

1.2.6 SFTP Client
Fetch a file with the Erlang SFTP client:

1> ssh:start().
ok
2> {ok, ChannelPid, Connection} = ssh_sftp:start_channel("tarlop", []).
{ok,<0.57.0>,<0.51.0>}
3> ssh_sftp:read_file(ChannelPid, "/home/otptest/test.txt").
{ok,<<"This is a test file\n">>}

1.2.7 SFTP Client with TAR Compression
Basic example
This is an example of writing and then reading a tar file:

Ericsson AB. All Rights Reserved.: SSH | 9

1.2 Getting Started

{ok,HandleWrite} = ssh_sftp:open_tar(ChannelPid, ?tar_file_name, [write]),
ok = erl_tar:add(HandleWrite,),
ok = erl_tar:add(HandleWrite,),
...
ok = erl_tar:add(HandleWrite,),
ok = erl_tar:close(HandleWrite),

%% And for reading
{ok,HandleRead} = ssh_sftp:open_tar(ChannelPid, ?tar_file_name, [read]),
{ok,NameValueList} = erl_tar:extract(HandleRead,[memory]),
ok = erl_tar:close(HandleRead),

Example with encryption
The previous Basic example can be extended with encryption and decryption as follows:

%% First three parameters depending on which crypto type we select:
Key = <<"This is a 256 bit key. abcdefghi">>,
Ivec0 = crypto:strong_rand_bytes(16),
DataSize = 1024, % DataSize rem 16 = 0 for aes_cbc

%% Initialization of the CryptoState, in this case it is the Ivector.
InitFun = fun() -> {ok, Ivec0, DataSize} end,

%% How to encrypt:
EncryptFun =
 fun(PlainBin,Ivec) ->
 EncryptedBin = crypto:block_encrypt(aes_cbc256, Key, Ivec, PlainBin),
 {ok, EncryptedBin, crypto:next_iv(aes_cbc,EncryptedBin)}
 end,

%% What to do with the very last block:
CloseFun =
 fun(PlainBin, Ivec) ->
 EncryptedBin = crypto:block_encrypt(aes_cbc256, Key, Ivec,
 pad(16,PlainBin) %% Last chunk
),
 {ok, EncryptedBin}
 end,

Cw = {InitFun,EncryptFun,CloseFun},
{ok,HandleWrite} = ssh_sftp:open_tar(ChannelPid, ?tar_file_name, [write,{crypto,Cw}]),
ok = erl_tar:add(HandleWrite,),
ok = erl_tar:add(HandleWrite,),
...
ok = erl_tar:add(HandleWrite,),
ok = erl_tar:close(HandleWrite),

%% And for decryption (in this crypto example we could use the same InitFun
%% as for encryption):
DecryptFun =
 fun(EncryptedBin,Ivec) ->
 PlainBin = crypto:block_decrypt(aes_cbc256, Key, Ivec, EncryptedBin),
 {ok, PlainBin, crypto:next_iv(aes_cbc,EncryptedBin)}
 end,

Cr = {InitFun,DecryptFun},
{ok,HandleRead} = ssh_sftp:open_tar(ChannelPid, ?tar_file_name, [read,{crypto,Cw}]),
{ok,NameValueList} = erl_tar:extract(HandleRead,[memory]),
ok = erl_tar:close(HandleRead),

10 | Ericsson AB. All Rights Reserved.: SSH

1.2 Getting Started

1.2.8 Creating a Subsystem
A small ssh subsystem that echoes N bytes can be implemented as shown in the following example:

-module(ssh_echo_server).
-behaviour(ssh_server_channel). % replaces ssh_daemon_channel
-record(state, {
 n,
 id,
 cm
 }).
-export([init/1, handle_msg/2, handle_ssh_msg/2, terminate/2]).

init([N]) ->
 {ok, #state{n = N}}.

handle_msg({ssh_channel_up, ChannelId, ConnectionManager}, State) ->
 {ok, State#state{id = ChannelId,
 cm = ConnectionManager}}.

handle_ssh_msg({ssh_cm, CM, {data, ChannelId, 0, Data}}, #state{n = N} = State) ->
 M = N - size(Data),
 case M > 0 of
 true ->
 ssh_connection:send(CM, ChannelId, Data),
 {ok, State#state{n = M}};
 false ->
 <<SendData:N/binary, _/binary>> = Data,
 ssh_connection:send(CM, ChannelId, SendData),
 ssh_connection:send_eof(CM, ChannelId),
 {stop, ChannelId, State}
 end;
handle_ssh_msg({ssh_cm, _ConnectionManager,
 {data, _ChannelId, 1, Data}}, State) ->
 error_logger:format(standard_error, " ~p~n", [binary_to_list(Data)]),
 {ok, State};

handle_ssh_msg({ssh_cm, _ConnectionManager, {eof, _ChannelId}}, State) ->
 {ok, State};

handle_ssh_msg({ssh_cm, _, {signal, _, _}}, State) ->
 %% Ignore signals according to RFC 4254 section 6.9.
 {ok, State};

handle_ssh_msg({ssh_cm, _, {exit_signal, ChannelId, _, _Error, _}},
 State) ->
 {stop, ChannelId, State};

handle_ssh_msg({ssh_cm, _, {exit_status, ChannelId, _Status}}, State) ->
 {stop, ChannelId, State}.

terminate(_Reason, _State) ->
 ok.

The subsystem can be run on the host tarlop with the generated keys, as described in Section Running an Erlang
ssh Daemon:

Ericsson AB. All Rights Reserved.: SSH | 11

1.3 Terminology

1> ssh:start().
ok
2> ssh:daemon(8989, [{system_dir, "/tmp/ssh_daemon"},
 {user_dir, "/tmp/otptest_user/.ssh"}
 {subsystems, [{"echo_n", {ssh_echo_server, [10]}}]}]).
{ok,<0.54.0>}
3>

1> ssh:start().
ok
2> {ok, ConnectionRef} = ssh:connect("tarlop", 8989,
 [{user_dir, "/tmp/otptest_user/.ssh"}]).
 {ok,<0.57.0>}
3> {ok, ChannelId} = ssh_connection:session_channel(ConnectionRef, infinity).
4> success = ssh_connection:subsystem(ConnectionRef, ChannelId, "echo_n", infinity).
5> ok = ssh_connection:send(ConnectionRef, ChannelId, "0123456789", infinity).
6> flush().
{ssh_msg, <0.57.0>, {data, 0, 1, "0123456789"}}
{ssh_msg, <0.57.0>, {eof, 0}}
{ssh_msg, <0.57.0>, {closed, 0}}
7> {error, closed} = ssh_connection:send(ConnectionRef, ChannelId, "10", infinity).

See also ssh_client_channel(3) (replaces ssh_channel(3)).

1.3 Terminology
1.3.1 General Information
In the following terms that may cause confusion are explained.

1.3.2 The term "user"
A "user" is a term that everyone understands intuitively. However, the understandings may differ which can cause
confusion.

The term is used differently in OpenSSH and SSH in Erlang/OTP. The reason is the different environments and use
cases that are not immediately obvious.

This chapter aims at explaining the differences and giving a rationale for why Erlang/OTP handles "user" as it does.

In OpenSSH
Many have been in contact with the command 'ssh' on a Linux machine (or similar) to remotly log in on another
machine. One types

ssh host

to log in on the machine named host. The command prompts for your password on the remote host and then you
can read, write and execute as your user name has rights on the remote host. There are stronger variants with pre-
distributed keys or certificates, but that are for now just details in the authentication process.

You could log in as the user anotheruser with

ssh anotheruser@host

and you will then be enabled to act as anotheruser on the host if authorized correctly.

12 | Ericsson AB. All Rights Reserved.: SSH

href

1.3 Terminology

So what does "your user name has rights" mean? In a UNIX/Linux/etc context it is exactly as that context: The user
could read, write and execute programs according to the OS rules. In addition, the user has a home directory ($HOME)
and there is a $HOME/.ssh/ directory with ssh-specific files.

SSH password authentication
When SSH tries to log in to a host, the ssh protocol communicates the user name (as a string) and a password. The
remote ssh server checks that there is such a user defined and that the provided password is acceptable.

If so, the user is authorized.

SSH public key authentication
This is a stronger method where the ssh protocol brings the user name, the user's public key and some cryptographic
information which we could ignore here.

The ssh server on the remote host checks:

• That the user has a home directory,

• that home directory contains a .ssh/ directory and

• the .ssh/ directory contains the public key just received in the authorized_keys file

if so, the user is authorized.

The SSH server on UNIX/Linux/etc after a successful authentication
After a successful incoming authentication, a new process runs as the just authenticated user.

Next step is to start a service according to the ssh request. In case of a request of a shell, a new one is started which
handles the OS-commands that arrives from the client (that's "you").

In case of a sftp request, an sftp server is started in with the user's rights. So it could read, write or delete files if
allowed for that user.

In Erlang/OTP SSH
For the Erlang/OTP SSH server the situation is different. The server executes in an Erlang process in the Erlang
emulator which in turn executes in an OS process. The emulator does not try to change its user when authenticated over
the SSH protocol. So the remote user name is only for authentication purposes in the Erlang/OTP SSH application.

Password authentication in Erlang SSH
The Erlang/OTP SSH server checks the user name and password in the following order:

• If a pwdfun is defined, that one is called and the returned boolean is the authentication result.

• Else, if the user_passwords option is defined and the username and the password matches, the
authentication is a success.

• Else, if the option password is defined and matches the password the authentication is a success. Note that the
use of this option is not recommended in non-test code.

Public key authentication in Erlang SSH
The user name, public key and cryptographic data (a signature) that is sent by the client, are used as follows (some
steps left out for clearity):

• A callback module is selected using the options key_cb.

Ericsson AB. All Rights Reserved.: SSH | 13

1.4 Configuration in SSH

• The callback module is used to check that the provided public key is one of the user's pre-stored. In case of the
default callback module, the files authorized_keys and authorized_keys2 are searched in a directory
found in the following order:

• If the option user_dir_fun is defined, that fun is called and the returned directory is used,

• Else, If the option user_dir is defined, that directory is used,

• Else the subdirectory .ssh in the home directory of the user executing the OS process of the Erlang
emulator is used.

If the provided public key is not found, the authentication fails.

• Finally, if the provided public key is found, the signature provided by the client is checked with the public key.

The Erlang/OTP SSH server after a successful authentication
After a successful authentication an Erlang process is handling the service request from the remote ssh client. The
rights of that process are those of the user of the OS process running the Erlang emulator.

If a shell service request arrives to the server, an Erlang shell is opened in the server's emulator. The rights in that
shell is independent of the just authenticated user.

In case of an sftp request, an sftp server is started with the rights of the user of the Erlang emulator's OS process. So
with sftp the authenticated user does not influence the rights.

So after an authentication, the user name is not used anymore and has no influence.

1.4 Configuration in SSH
1.4.1 Introduction
The OTP SSH app can be configurated by a large amount of Options. This chapter will not go into details of what
each of the options does. It will however describe and define different ways by which they could be entered.

Options for hardening are described in the Hardening SSH chapter. How the options for algorithm configuration
interact are described in the Configuring algorithms in SSH chapter.

1.4.2 Options configuration
There are from OTP-23.0 two main ways to set an option:

• Like before, in the Options parameter in the Erlang code in a call to for example ssh:daemon/3 or
ssh:connect/3 or any of their variants. Example:

ssh:connect(22, [{user,"foo"}])

14 | Ericsson AB. All Rights Reserved.: SSH

1.4 Configuration in SSH

• In OTP Configuration Parameters:

• In the erl command line:

erl -ssh user \"foo\"

• In the ssh.app file, in the env part

{application, ssh,
 [{description, "SSH-2 for Erlang/OTP"},
 {vsn, "4.9"},
 {modules, [ssh,
 ...
 ssh_xfer]},
 {registered, []},
 {applications, [kernel, stdlib, crypto, public_key]},
 {env, [{user, "bar"]}, % <<<<<<<<<<<<<<<<<<<<<<<<<<<<<< HERE
 {mod, {ssh_app, []}},
 ...

• In a .config file:

erl -config ex1

where ex1.config contains:

[
{ssh, [{user, "foo"}]}
].

If the option is intended only for a server or for a client, it may be set in this way:

[
{ssh, [{server_options,[{user, "foo"}]},
 {client_options,[{user, "bar"}]}
].

A server (daemon) will use the user name foo, and a client will use the name bar.

1.4.3 Precedens
If an option is set in more than one way, what happens?

There is an ordering, which is:

• Level 0: Hard-coded default values in the OTP SSH source code

• Level 1: OTP Configuration Parameters

• Level 2: Options in the OTP Configuration Parameters server_options or client_options

• Level 3: Options in argument list to a function

If the same option is set at two different levels, the one at the highest level is used.

The only exception is the modify_algorithms common option. They are all applied in ascending level order on the set
of algorithms. So a modify_algorithms on level one is applied before one of level two and so on.

If there is an preferred_algorithms option on some level the whole set is replaced by that in that option and all
modify_algorithms are applied in level ordering.

The reason for applying all modify_algorithms in level order, is to enable the user to add an algorithm that has been
removed from the default set without code changes, only by adding an option in a config file. This can be used to
interoperate with legacy systems that still uses algorithms no longer considered secure enough to be supported by
default.

Ericsson AB. All Rights Reserved.: SSH | 15

1.4 Configuration in SSH

Algorithm configuration
There is a separate chapter about how preferred_algorithms and modify_algorithms co-operate. How the different
configuration levels affect them, is described here in this section.

The ssh:start/0 function
If the application SSH is not started, the command ssh:default_algorithms/0 delivers the list of default (hardcoded)
algorithms with respect to the support in the current cryptolib.

If the application SSH is started, the command ssh:default_algorithms/0 delvers the list of algorithms after application
of level 0 and level 1 configurations.

Here is an example. The config-file has the following contents:

$ cat ex2.config
[
 {ssh, [{preferred_algorithms, [{cipher, ['aes192-ctr']},
 {public_key, ['ssh-rsa']},
 {kex, ['ecdh-sha2-nistp384']},
 {mac, ['hmac-sha1']}]}]}
].

Erlang is started with ex2.config as configuration and we check the default set of algorithms before starting ssh:

$ erl -config ex2
Erlang/OTP 23 [RELEASE CANDIDATE 1] [erts-10.6.4] [source-96a0823109] [64-bit] [smp:4:4] [ds:4:4:10] [async-threads:1] [hipe]

Eshell V10.6.4 (abort with ^G)
1> ssh:default_algorithms().
[{kex,['ecdh-sha2-nistp384','ecdh-sha2-nistp521',
 'ecdh-sha2-nistp256','diffie-hellman-group-exchange-sha256',
 'diffie-hellman-group16-sha512',
 'diffie-hellman-group18-sha512',
 'diffie-hellman-group14-sha256','curve25519-sha256',
 'curve25519-sha256@libssh.org','curve448-sha512',
 'diffie-hellman-group14-sha1',
 'diffie-hellman-group-exchange-sha1']},
 {public_key,['ecdsa-sha2-nistp384','ecdsa-sha2-nistp521',
 'ecdsa-sha2-nistp256','ssh-ed25519','ssh-ed448','ssh-rsa',
 'rsa-sha2-256','rsa-sha2-512','ssh-dss']},
 {cipher,[{client2server,['chacha20-poly1305@openssh.com',
 'aes256-gcm@openssh.com','aes256-ctr','aes192-ctr',
 'aes128-gcm@openssh.com','aes128-ctr','aes256-cbc',
 'aes192-cbc','aes128-cbc','3des-cbc']},
 {server2client,['chacha20-poly1305@openssh.com',
 'aes256-gcm@openssh.com','aes256-ctr','aes192-ctr',
 'aes128-gcm@openssh.com','aes128-ctr','aes256-cbc',
 'aes192-cbc','aes128-cbc','3des-cbc']}]},
 {mac,[{client2server,['hmac-sha2-256','hmac-sha2-512',
 'hmac-sha1']},
 {server2client,['hmac-sha2-256','hmac-sha2-512',
 'hmac-sha1']}]},
 {compression,[{client2server,[none,'zlib@openssh.com',zlib]},
 {server2client,[none,'zlib@openssh.com',zlib]}]}]

Note that the algorithms in the file ex2.config is not yet applied. They will be when we start ssh:

16 | Ericsson AB. All Rights Reserved.: SSH

1.4 Configuration in SSH

2> ssh:start().
ok
3> ssh:default_algorithms().
[{kex,['ecdh-sha2-nistp384']},
 {public_key,['ssh-rsa']},
 {cipher,[{client2server,['aes192-ctr']},
 {server2client,['aes192-ctr']}]},
 {mac,[{client2server,['hmac-sha1']},
 {server2client,['hmac-sha1']}]},
 {compression,[{client2server,[none,'zlib@openssh.com',zlib]},
 {server2client,[none,'zlib@openssh.com',zlib]}]}]
4>

We see that the algorithm set is changed to the one in the ex2.config. Since compression is not specified in
the file, the hard-coded default is still used for that entry.

Establishing a connection (ssh:connect et al) or starting a daemon (ssh:daemon)
Both when the client establishes a connection with ssh:connect or other functions, or a daemon is started with
ssh:daemon, the option lists in the function calls are also used.

If a client is started (ssh:connect et al), the environment variable client_options is used. Similarly for a daemon
the server_options variable is handled.

If any preferred_algorithms is present, the one with the highest level is used, that is, the Option list parameter has
the highest priority. Then the modify_algorithms on all levels in order starting with level 0 are applied.

We continue the example above by connecting to a server and modifying the kex algorithm set. We remove the only
one ('ecdh-sha2-nistp384') and add 'curve25519-sha256@libssh.org' by appending it to the now
empty list:

4> {ok,C} = ssh:connect(loopback, 22,
 [{modify_algorithms,
 [{rm,
 [{kex,['ecdh-sha2-nistp384']}]
 },
 {append,
 [{kex,['curve25519-sha256@libssh.org']}]
 }
]
 }
]).
{ok,>0.118.0>}

We check which algorithms are negotiated by the client and the server, and note that the (only) kex algorithm
'curve25519-sha256@libssh.org' was selected:

5> ssh:connection_info(C, algorithms).
{algorithms,[{kex,'curve25519-sha256@libssh.org'},
 {hkey,'ssh-rsa'},
 {send_mac,'hmac-sha1'},
 {recv_mac,'hmac-sha1'},
 {encrypt,'aes192-ctr'},
 {decrypt,'aes192-ctr'},
 {compress,none},
 {decompress,none},
 {send_ext_info,false},
 {recv_ext_info,true}]}

Example of modify_algorithms handling
We will now check if the modify_algorithms on a lower level is applied to a preferred_algorithms on a higher level.
We will do that by enabling the ssh-dss algorithm that is supported, but not in the default set.

Ericsson AB. All Rights Reserved.: SSH | 17

1.5 Configuring algorithms in SSH

The config file ex3.config has the contents:

[
 {ssh, [{modify_algorithms,
 [{prepend, [{public_key, ['ssh-dss']}]}]
 }]}
].

A newly started erlang shell shows that no 'ssh-dss' is present in the public_key entry:

1> proplists:get_value(public_key, ssh:default_algorithms()).
['ecdsa-sha2-nistp384','ecdsa-sha2-nistp521',
 'ecdsa-sha2-nistp256','ssh-ed25519','ssh-ed448',
 'rsa-sha2-256','rsa-sha2-512','ssh-rsa']
2>

A call to ssh:connect/3 removes all algorithms but one of each type:

2> ssh:start().
ok
3> {ok,C} = ssh:connect(loopback, 22,
 [{preferred_algorithms,
 [{public_key, ['ecdsa-sha2-nistp256']},
 {kex, ['ecdh-sha2-nistp256']},
 {cipher, ['chacha20-poly1305@openssh.com']},
 {mac, ['hmac-sha2-256']},
 {compression, [none]}
]}
]).
{ok,<0.101.0>}
4> ssh:connection_info(C,algorithms).
{algorithms,[{kex,'ecdh-sha2-nistp256'},
 {hkey,'ssh-dss'},
 {send_mac,'chacha20-poly1305@openssh.com'},
 {recv_mac,'chacha20-poly1305@openssh.com'},
 {encrypt,'chacha20-poly1305@openssh.com'},
 {decrypt,'chacha20-poly1305@openssh.com'},
 {compress,none},
 {decompress,none},
 {send_ext_info,false},
 {recv_ext_info,true}]}
5>

But 'ssh-dss' is selected although the call inserted only 'ecdsa-sha2-nistp256' as acceptable.

This example showed that we could augment the set of algorithms with a config-file without the need to change the
actual call.

For demonstration purposes we used prepend instead of append. This forces the negotiation to select ssh-dss
since the the full list of public key algorithms was ['ssh-dss','ecdsa-sha2-nistp256']. Normally it is
safer to append a non-default algorithm.

1.5 Configuring algorithms in SSH
1.5.1 Introduction
To fully understand how to configure the algorithms, it is essential to have a basic understanding of the SSH protocol
and how OTP SSH app handles the corresponding items

The first subsection will give a short background of the SSH protocol while later sections describes the implementation
and provides some examples

18 | Ericsson AB. All Rights Reserved.: SSH

1.5 Configuring algorithms in SSH

How the different levels of configuration "interfer" with this, see the section Algorithm Configuration in the chapter
Configuration in SSH.

Basics of the ssh protocol's algorithms handling
SSH uses different sets of algorithms in different phases of a session. Which algorithms to use is negotiated by the
client and the server at the beginning of a session. See RFC 4253, "The Secure Shell (SSH) Transport Layer Protocol"
for details.

The negotiation is simple: both peers sends their list of supported alghorithms to the other part. The first algorithm
on the client's list that also in on the server's list is selected. So it is the client's orderering of the list that gives the
priority for the algorithms.

There are five lists exchanged in the connection setup. Three of them are also divided in two directions, to and from
the server.

The lists are (named as in the SSH application's options):

kex

Key exchange.

An algorithm is selected for computing a secret encryption key. Among examples are: the old nowadays
week 'diffie-hellman-group-exchange-sha1' and the very strong and modern 'ecdh-sha2-
nistp512'.

public_key

Server host key

The asymmetric encryption algorithm used in the server's private-public host key pair. Examples include the well-
known RSA 'ssh-rsa' and elliptic curve 'ecdsa-sha2-nistp521'.

cipher

Symmetric cipher algorithm used for the payload encryption. This algorithm will use the key calculated in the
kex phase (together with other info) to generate the actual key used. Examples are tripple-DES '3des-cbc'
and one of many AES variants 'aes192-ctr'.

This list is actually two - one for each direction server-to-client and client-to-server. Therefore it is possible but
rare to have different algorithms in the two directions in one connection.

mac

Message authentication code

"Check sum" of each message sent between the peers. Examples are SHA 'hmac-sha1' and SHA2 'hmac-
sha2-512'.

This list is also divided into two for the both directions

compression

If and how to compress the message. Examples are none, that is, no compression and zlib.

This list is also divided into two for the both directions

The SSH app's mechanism
The set of algorithms that the SSH app uses by default depends on the algorithms supported by the:

• crypto app,

• The cryptolib OTP is linked with, usually the one the OS uses, probably OpenSSL,

• and finally what the SSH app implements

Ericsson AB. All Rights Reserved.: SSH | 19

href

1.5 Configuring algorithms in SSH

Due to this, it impossible to list in documentation what algorithms that are available in a certain installation.

There is an important command to list the actual algorithms and their ordering: ssh:default_algorithms/0.

0> ssh:default_algorithms().
[{kex,['ecdh-sha2-nistp384','ecdh-sha2-nistp521',
 'ecdh-sha2-nistp256','diffie-hellman-group-exchange-sha256',
 'diffie-hellman-group16-sha512',
 'diffie-hellman-group18-sha512',
 'diffie-hellman-group14-sha256',
 'diffie-hellman-group14-sha1',
 'diffie-hellman-group-exchange-sha1']},
 {public_key,['ecdsa-sha2-nistp384','ecdsa-sha2-nistp521',
 'ecdsa-sha2-nistp256','ssh-rsa','rsa-sha2-256',
 'rsa-sha2-512','ssh-dss']},
 {cipher,[{client2server,['aes256-gcm@openssh.com',
 'aes256-ctr','aes192-ctr','aes128-gcm@openssh.com',
 'aes128-ctr','aes128-cbc','3des-cbc']},
 {server2client,['aes256-gcm@openssh.com','aes256-ctr',
 'aes192-ctr','aes128-gcm@openssh.com','aes128-ctr',
 'aes128-cbc','3des-cbc']}]},
 {mac,[{client2server,['hmac-sha2-256','hmac-sha2-512',
 'hmac-sha1']},
 {server2client,['hmac-sha2-256','hmac-sha2-512',
 'hmac-sha1']}]},
 {compression,[{client2server,[none,'zlib@openssh.com',zlib]},
 {server2client,[none,'zlib@openssh.com',zlib]}]}]

To change the algorithm list, there are two options which can be used in ssh:connect/2,3,4 and ssh:daemon/2,3. The
options could of course be used in all other functions that initiates connections.

The options are preferred_algorithms and modify_algorithms. The first one replaces the default set, while the latter
modifies the default set.

1.5.2 Replacing the default set: preferred_algorithms
See the Reference Manual for details

Here follows a series of examples ranging from simple to more complex.

To forsee the effect of an option there is an experimental function ssh:chk_algos_opts(Opts). It
mangles the options preferred_algorithms and modify_algorithms in the same way as ssh:daemon,
ssh:connect and their friends does.

Example 1
Replace the kex algorithms list with the single algorithm 'diffie-hellman-group14-sha256':

20 | Ericsson AB. All Rights Reserved.: SSH

1.5 Configuring algorithms in SSH

1> ssh:chk_algos_opts(
 [{preferred_algorithms,
 [{kex, ['diffie-hellman-group14-sha256']}
]
 }
]).
[{kex,['diffie-hellman-group14-sha256']},
 {public_key,['ecdsa-sha2-nistp384','ecdsa-sha2-nistp521',
 'ecdsa-sha2-nistp256','ssh-rsa','rsa-sha2-256',
 'rsa-sha2-512','ssh-dss']},
 {cipher,[{client2server,['aes256-gcm@openssh.com',
 'aes256-ctr','aes192-ctr','aes128-gcm@openssh.com',
 'aes128-ctr','aes128-cbc','3des-cbc']},
 {server2client,['aes256-gcm@openssh.com','aes256-ctr',
 'aes192-ctr','aes128-gcm@openssh.com','aes128-ctr',
 'aes128-cbc','3des-cbc']}]},
 {mac,[{client2server,['hmac-sha2-256','hmac-sha2-512',
 'hmac-sha1']},
 {server2client,['hmac-sha2-256','hmac-sha2-512',
 'hmac-sha1']}]},
 {compression,[{client2server,[none,'zlib@openssh.com',zlib]},
 {server2client,[none,'zlib@openssh.com',zlib]}]}]

Note that the unmentioned lists (public_key, cipher, mac and compression) are un-changed.

Example 2
In the lists that are divided in two for the two directions (c.f cipher) it is possible to change both directions at once:

2> ssh:chk_algos_opts(
 [{preferred_algorithms,
 [{cipher,['aes128-ctr']}
]
 }
]).
[{kex,['ecdh-sha2-nistp384','ecdh-sha2-nistp521',
 'ecdh-sha2-nistp256','diffie-hellman-group-exchange-sha256',
 'diffie-hellman-group16-sha512',
 'diffie-hellman-group18-sha512',
 'diffie-hellman-group14-sha256',
 'diffie-hellman-group14-sha1',
 'diffie-hellman-group-exchange-sha1']},
 {public_key,['ecdsa-sha2-nistp384','ecdsa-sha2-nistp521',
 'ecdsa-sha2-nistp256','ssh-rsa','rsa-sha2-256',
 'rsa-sha2-512','ssh-dss']},
 {cipher,[{client2server,['aes128-ctr']},
 {server2client,['aes128-ctr']}]},
 {mac,[{client2server,['hmac-sha2-256','hmac-sha2-512',
 'hmac-sha1']},
 {server2client,['hmac-sha2-256','hmac-sha2-512',
 'hmac-sha1']}]},
 {compression,[{client2server,[none,'zlib@openssh.com',zlib]},
 {server2client,[none,'zlib@openssh.com',zlib]}]}]

Note that both lists in cipher has been changed to the provided value ('aes128-ctr').

Example 3
In the lists that are divided in two for the two directions (c.f cipher) it is possible to change only one of the directions:

Ericsson AB. All Rights Reserved.: SSH | 21

1.5 Configuring algorithms in SSH

3> ssh:chk_algos_opts(
 [{preferred_algorithms,
 [{cipher,[{client2server,['aes128-ctr']}]}
]
 }
]).
[{kex,['ecdh-sha2-nistp384','ecdh-sha2-nistp521',
 'ecdh-sha2-nistp256','diffie-hellman-group-exchange-sha256',
 'diffie-hellman-group16-sha512',
 'diffie-hellman-group18-sha512',
 'diffie-hellman-group14-sha256',
 'diffie-hellman-group14-sha1',
 'diffie-hellman-group-exchange-sha1']},
 {public_key,['ecdsa-sha2-nistp384','ecdsa-sha2-nistp521',
 'ecdsa-sha2-nistp256','ssh-rsa','rsa-sha2-256',
 'rsa-sha2-512','ssh-dss']},
 {cipher,[{client2server,['aes128-ctr']},
 {server2client,['aes256-gcm@openssh.com','aes256-ctr',
 'aes192-ctr','aes128-gcm@openssh.com','aes128-ctr',
 'aes128-cbc','3des-cbc']}]},
 {mac,[{client2server,['hmac-sha2-256','hmac-sha2-512',
 'hmac-sha1']},
 {server2client,['hmac-sha2-256','hmac-sha2-512',
 'hmac-sha1']}]},
 {compression,[{client2server,[none,'zlib@openssh.com',zlib]},
 {server2client,[none,'zlib@openssh.com',zlib]}]}]

Example 4
It is of course possible to change more than one list:

4> ssh:chk_algos_opts(
 [{preferred_algorithms,
 [{cipher,['aes128-ctr']},
 {mac,['hmac-sha2-256']},
 {kex,['ecdh-sha2-nistp384']},
 {public_key,['ssh-rsa']},
 {compression,[{server2client,[none]},
 {client2server,[zlib]}]}
]
 }
]).
[{kex,['ecdh-sha2-nistp384']},
 {public_key,['ssh-rsa']},
 {cipher,[{client2server,['aes128-ctr']},
 {server2client,['aes128-ctr']}]},
 {mac,[{client2server,['hmac-sha2-256']},
 {server2client,['hmac-sha2-256']}]},
 {compression,[{client2server,[zlib]},
 {server2client,[none]}]}]

Note that the ordering of the tuples in the lists didn't matter.

1.5.3 Modifying the default set: modify_algorithms
A situation where it might be useful to add an algorithm is when one need to use a supported but disabled one. An
example is the 'diffie-hellman-group1-sha1' which nowadays is very unsecure and therefore disabled. It
is however still supported and might be used.

The option preferred_algorithms may be complicated to use for adding or removing single algorithms. First
one has to list them with ssh:default_algorithms() and then do changes in the lists.

22 | Ericsson AB. All Rights Reserved.: SSH

1.5 Configuring algorithms in SSH

To facilitate addition or removal of algorithms the option modify_algorithms is available. See the Reference
Manual for details.

The option takes a list with instructions to append, prepend or remove algorithms:

{modify_algorithms, [{append, ...},
 {prepend, ...},
 {rm, ...}
]}

Each of the ... can be a algs_list() as the argument to the preferred_algorithms option.

Example 5
As an example let's add the Diffie-Hellman Group1 first in the kex list. It is supported according to Supported
algorithms.

5> ssh:chk_algos_opts(
 [{modify_algorithms,
 [{prepend,
 [{kex,['diffie-hellman-group1-sha1']}]
 }
]
 }
]).
[{kex,['diffie-hellman-group1-sha1','ecdh-sha2-nistp384',
 'ecdh-sha2-nistp521','ecdh-sha2-nistp256',
 'diffie-hellman-group-exchange-sha256',
 'diffie-hellman-group16-sha512',
 'diffie-hellman-group18-sha512',
 'diffie-hellman-group14-sha256',
 'diffie-hellman-group14-sha1',
 'diffie-hellman-group-exchange-sha1']},
 {public_key,['ecdsa-sha2-nistp384','ecdsa-sha2-nistp521',
 'ecdsa-sha2-nistp256','ssh-rsa','rsa-sha2-256',
 'rsa-sha2-512','ssh-dss']},
 {cipher,[{client2server,['aes256-gcm@openssh.com',
 'aes256-ctr','aes192-ctr','aes128-gcm@openssh.com',
 'aes128-ctr','aes128-cbc','3des-cbc']},
 {server2client,['aes256-gcm@openssh.com','aes256-ctr',
 'aes192-ctr','aes128-gcm@openssh.com','aes128-ctr',
 'aes128-cbc','3des-cbc']}]},
 {mac,[{client2server,['hmac-sha2-256','hmac-sha2-512',
 'hmac-sha1']},
 {server2client,['hmac-sha2-256','hmac-sha2-512',
 'hmac-sha1']}]},
 {compression,[{client2server,[none,'zlib@openssh.com',zlib]},
 {server2client,[none,'zlib@openssh.com',zlib]}]}]

And the result shows that the Diffie-Hellman Group1 is added at the head of the kex list

Example 6
In this example, we in put the 'diffie-hellman-group1-sha1' first and also move the 'ecdh-sha2-nistp521' to
the end in the kex list, that is, append it.

Ericsson AB. All Rights Reserved.: SSH | 23

1.5 Configuring algorithms in SSH

6> ssh:chk_algos_opts(
 [{modify_algorithms,
 [{prepend,
 [{kex, ['diffie-hellman-group1-sha1']}
]},
 {append,
 [{kex, ['ecdh-sha2-nistp521']}
]}
]
 }
]).
[{kex,['diffie-hellman-group1-sha1','ecdh-sha2-nistp384',
 'ecdh-sha2-nistp256','diffie-hellman-group-exchange-sha256',
 'diffie-hellman-group16-sha512',
 'diffie-hellman-group18-sha512',
 'diffie-hellman-group14-sha256',
 'diffie-hellman-group14-sha1',
 'diffie-hellman-group-exchange-sha1','ecdh-sha2-nistp521']},
 {public_key,['ecdsa-sha2-nistp384','ecdsa-sha2-nistp521',

]

Note that the appended algorithm is removed from its original place and then appended to the same list.

Example 7
In this example, we use both options (preferred_algorithms and modify_algorithms) and also try to
prepend an unsupported algorithm. Any unsupported algorithm is quietly removed.

7> ssh:chk_algos_opts(
 [{preferred_algorithms,
 [{cipher,['aes128-ctr']},
 {mac,['hmac-sha2-256']},
 {kex,['ecdh-sha2-nistp384']},
 {public_key,['ssh-rsa']},
 {compression,[{server2client,[none]},
 {client2server,[zlib]}]}
]
 },
 {modify_algorithms,
 [{prepend,
 [{kex, ['some unsupported algorithm']}
]},
 {append,
 [{kex, ['diffie-hellman-group1-sha1']}
]}
]
 }
]).
[{kex,['ecdh-sha2-nistp384','diffie-hellman-group1-sha1']},
 {public_key,['ssh-rsa']},
 {cipher,[{client2server,['aes128-ctr']},
 {server2client,['aes128-ctr']}]},
 {mac,[{client2server,['hmac-sha2-256']},
 {server2client,['hmac-sha2-256']}]},
 {compression,[{client2server,[zlib]},
 {server2client,[none]}]}]

It is of course questionable why anyone would like to use the both these options together, but it is possible if an
unforeseen need should arise.

24 | Ericsson AB. All Rights Reserved.: SSH

1.6 Hardening

Example 8
In this example, we need to use a diffie-hellman-group1-sha1 key exchange algorithm although it is unsage and
disabled by default.

We use the modify_algorithms option, because we want to keep all other algorithm definitions.

We add the option:

 {modify_algorithms, [{append, [{kex,['diffie-hellman-group1-sha1']}]}]}

either to the Options list in a function call, in the ssh.app file or in a .config file for the erl command. See the
chapter Configuration in SSH in the SSH User's Guide.

Example 9
In this example, we need to use a DSA key for sign and verify. It might be either as a user's key, a host's key or both.

To do that, we enable the 'ssh-dss' algorithm that is disabled by default by security reasons. We use the
modify_algorithms option, because we want to keep all other algorithm definitions.

We add the option:

 {modify_algorithms, [{append, [{public_key,['ssh-dss']}]}]}

either to the Options list in a function call, in the ssh.app file or in a .config file for the erl command. See the
chapter Configuration in SSH in the SSH User's Guide.

1.6 Hardening
1.6.1 Introduction
The Erlang/OTP SSH application is intended to be used in other applications as a library.

Different applications using this library may have very different requirements. One application could be running on a
high performance server, while another is running on a small device with very limited cpu capacity. For example, the
first one may accept many users simultaneously logged in, while the second one wants to limit them to only one.

That simple example shows that it is impossible to deliver the SSH application with default values on hardening options
as well on other options that suites every need.

The purpose of this guide is to discuss the different hardening options available, as a guide to the reader. Configuration
in general is described in the Configuration in SSH chapter.

1.6.2 Resilience to DoS attacks
The following applies to daemons (servers).

DoS (Denial of Service) attacks are hard to fight at the node level. Here are firewalls and other means needed, but
that is out of scope for this guide. However, some measures could be taken in the configuration of the SSH server to
increase the resilence. The options to use are:

Counters and parallelism
max_sessions

The maximum number of simultaneous sessions that are accepted at any time for this daemon. This includes
sessions that are being authorized. The default is that an unlimited number of simultaneous sessions are
allowed. It is a good candidate to set if the capacity of the server is low or a capacity margin is needed.

max_channels
The maximum number of channels that are accepted for each connection. The default is unlimited.

Ericsson AB. All Rights Reserved.: SSH | 25

1.6 Hardening

parallel_login
If set to false (the default value), only one login is handled at a time. If set to true, the number of simultaneous
login attempts are limited by the value of the max_sessions option.

Timeouts
hello_timeout

If the client fails to send the first ssh message after a tcp connection setup within this time (in milliseconds),
the connection is closed. The default value is 30 seconds. This is actually a generous time, so it can lowered to
make the daemon less prone to DoS attacks.

negotiation_timeout
Maximum time in milliseconds for the authentication negotiation counted from the TCP connection
establishment. If the client fails to log in within this time the connection is closed. The default value is 2
minutes. It is quite a long time, but can lowered if the client is supposed to be fast like if it is a program logging
in.

idle_time
Sets a time-out on a connection when no channels are left after closing the final one. It defaults to infinity.

max_initial_idle_time
Sets a time-out on a connection that will expire if no channel is opened on the connection. The timeout is
started when the authentication phase is completed. It defaults to infinity.

A figure clarifies when a timeout is started and when it triggers:

Figure 6.1: SSH server timeouts

26 | Ericsson AB. All Rights Reserved.: SSH

1.6 Hardening

1.6.3 Verifying the remote daemon (server) in an SSH client
Every SSH server presents a public key - the host key - to the client while keeping the corresponding private key in
relatively safe privacy.

The client checks that the host that presented the public key also possesses the private key of the key-pair. That check
is part of the SSH protocol.

But how can the client know that the host really is the one that it tried to connect to and not an evil one impersonating
the expected one using its own valid key-pair? There are two alternatives available with the default key handling plugin
ssh_file. The alternatives are:

Pre-store the host key

• For the default handler ssh_file, store the valid host keys in the file known_hosts and set the option
silently_accept_hosts to false.

• or, write a specialized key handler using the SSH client key API that accesses the pre-shared key in some
other way.

Pre-store the "fingerprint" (checksum) of the host key

• silently_accept_hosts

• accept_callback()

• {HashAlgoSpec, accept_callback()}

1.6.4 Verifying the remote client in a daemon (server)
Password checking

The default password checking is with the list in the user_passwords option in the SSH daemon. It could be
replaced with a pwdfun plugin. The arity four variant (pwdfun_4()) can also be used for introducing delays
after failed password checking attempts. Here is a simple example of such a pwdfun:

fun(User, Password, _PeerAddress, State) ->
 case lists:member({User,Password}, my_user_pwds()) of
 true ->
 {true, undefined}; % Reset delay time
 false when State == undefined ->
 timer:sleep(1000),
 {false, 2000}; % Next delay is 2000 ms
 false when is_integer(State) ->
 timer:sleep(State),
 {false, 2*State} % Double the delay for each failure
 end
end.

If a public key is used for logging in, there is normally no checking of the user name. It could be enabled by
setting the option pk_check_user to true. In that case the pwdfun will get the atom pubkey in the password
argument.

1.6.5 Hardening in the cryptographic area
Algorithm selection
One of the cornerstones of security in SSH is cryptography. The development in crypto analysis is fast, and yesterday's
secure algorithms are unsafe today. Therefore some algorithms are no longer enabled by default and that group grows
with time. See the SSH (App) for a list of supported and of disabled algorithms. In the User's Guide the chapter
Configuring algorithms in SSH describes the options for enabling or disabling algorithms - preferred_algorithms and
modify_algorithms.

Ericsson AB. All Rights Reserved.: SSH | 27

1.6 Hardening

Re-keying
In the setup of the SSH connection a secret cipher key is generated by co-operation of the client and the server. Keeping
this key secret is crucial for keeping the communication secret. As time passes and encrypted messages are exchanged,
the probability that a listener could guess that key increases.

The SSH protocol therefore has a special operation defined - key re-negotiation or re-keying. Any side (client or server)
could initiate the re-keying and the result is a new cipher key. The result is that the eves-dropper has to restart its evil
and dirty craftmanship.

See the option rekey_limit for a description.

1.6.6 Hardening of the SSH protocol - both daemons and clients
Disabling shell and exec in a daemon
A daemon has two services for evaluating tasks on behalf of a remote client. The exec server-side service takes a
string provided by the client, evaluates it and returns the result. The shell function enables the client to open a shell
in the shell host.

Those service could - and should - be disabled when they are not needed. The options exec and shell are enabled per
default but could be set to disabled if not needed. The same options could also install handlers for the string(s)
passed from the client to the server.

The id string
One way to reduce the risk of intrusion is to not convey which software and which version the intruder is connected
to. This limits the risk of an intruder exploiting known faults or peculiarities learned by reading the public code.

Each SSH client or daemon presents themselves to each other with brand and version. This may look like

SSH-2.0-Erlang/4.10

or

SSH-2.0-OpenSSH_7.6p1 Ubuntu-4ubuntu0.3

This brand and version may be changed with the option id_string. We start a daemon with that option:

 ssh:daemon(1234, [{id_string,"hi there"}, ...]).

and the daemon will present itself as:

SSH-2.0-hi there

It is possible to replace the string with one randomly generated for each connection attempt. See the reference manual
for id_string.

1.6.7 Client connection options
A client could limit the time for the initial tcp connection establishment with the option connect_timeout. The time
is in milliseconds, and the initial value is infinity.

The negotiation (session setup time) time can be limited with the parameter NegotiationTimeout in a call
establishing an ssh session, for example ssh:connect/3.

28 | Ericsson AB. All Rights Reserved.: SSH

1.6 Hardening

2 Reference Manual

The ssh application is an Erlang implementation of the Secure Shell Protocol (SSH) as defined by RFC 4250 - 4254.

Ericsson AB. All Rights Reserved.: SSH | 29

SSH

SSH
Application

The ssh application is an implementation of the SSH protocol in Erlang. ssh offers API functions to write customized
SSH clients and servers as well as making the Erlang shell available over SSH. An SFTP client, ssh_sftp, and
server, ssh_sftpd, are also included.

DEPENDENCIES
The ssh application uses the applications public_key and crypto to handle public keys and encryption. Hence, these
applications must be loaded for the ssh application to work. The call ssh:start/0 will do the necessary calls to
application:start/1,2 before it starts the ssh itself.

CONFIGURATION
The SSH application uses Configuration Parameters. Where to set them are described in config User's Guide with
SSH details in Configuration in SSH.

Some special configuration files from OpenSSH are also used:

• known_hosts

• authorized_keys

• authorized_keys2

• id_dsa (supported but disabled by default)

• id_rsa (SHA1 sign/verify are supported but disabled by default from OTP-24)

• id_ecdsa

• id_ed25519

• id_ed448

• ssh_host_dsa_key (supported but disabled by default)

• ssh_host_rsa_key (SHA1 sign/verify are supported but disabled by default from OTP-24)

• ssh_host_ecdsa_key

• ssh_host_ed25519_key

• ssh_host_ed448_key

By default, ssh looks for id_*, known_hosts, and authorized_keys in ~/.ssh, and for the ssh_host_*_key
files in /etc/ssh. These locations can be changed by the options user_dir and system_dir. More about where
to set them is described in Configuration in SSH.

Public key handling can also be customized through a callback module that implements the behaviors
ssh_client_key_api and ssh_server_key_api.

See also the default callback module documentation in ssh_file.

Disabled public key algorithms can be enabled with the preferred_algorithms or modify_algorithms options. See
Example 9 in Configuring algorithms in SSH for a description.

Public Keys
id_* are the users private key files. Notice that the public key is part of the private key so the ssh application does
not use the id_*.pub files. These are for the user's convenience when it is needed to convey the user's public key.

See ssh_file for details.

30 | Ericsson AB. All Rights Reserved.: SSH

SSH

Known Hosts
The known_hosts file contains a list of approved servers and their public keys. Once a server is listed, it can be
verified without user interaction.

See ssh_file for details.

Authorized Keys
The authorized_key file keeps track of the user's authorized public keys. The most common use of this file is to
let users log in without entering their password, which is supported by the Erlang ssh daemon.

See ssh_file for details.

Host Keys
RSA, DSA (if enabled), ECDSA, ED25519 and ED448 host keys are supported and are expected to be found in files
named ssh_host_rsa_key, ssh_host_dsa_key, ssh_host_ecdsa_key, ssh_host_ed25519_key
and ssh_host_ed448_key.

See ssh_file for details.

ERROR LOGGER AND EVENT HANDLERS
The ssh application uses the default OTP error logger to log unexpected errors or print information about special
events.

SUPPORTED SPECIFICATIONS AND STANDARDS
The supported SSH version is 2.0.

Algorithms
The actual set of algorithms may vary depending on which OpenSSL crypto library that is installed on the machine.
For the list on a particular installation, use the command ssh:default_algorithms/0. The user may override the
default algorithm configuration both on the server side and the client side. See the options preferred_algorithms and
modify_algorithms in the ssh:daemon/1,2,3 and ssh:connect/3,4 functions.

Supported algorithms are (in the default order):

Key exchange algorithms

• ecdh-sha2-nistp384

• ecdh-sha2-nistp521

• ecdh-sha2-nistp256

• diffie-hellman-group-exchange-sha256

• diffie-hellman-group16-sha512

• diffie-hellman-group18-sha512

• diffie-hellman-group14-sha256

• curve25519-sha256

• curve25519-sha256@libssh.org

• curve448-sha512

The following unsecure SHA1 algorithms are now disabled by default:

• (diffie-hellman-group14-sha1)

• (diffie-hellman-group-exchange-sha1)

Ericsson AB. All Rights Reserved.: SSH | 31

SSH

• (diffie-hellman-group1-sha1)

They can be enabled with the preferred_algorithms or modify_algorithms options. Use for example
the Option value {modify_algorithms, [{append, [{kex,['diffie-hellman-group1-
sha1']}]}]})

Public key algorithms

• ecdsa-sha2-nistp384

• ecdsa-sha2-nistp521

• ecdsa-sha2-nistp256

• ssh-ed25519

• ssh-ed448

• rsa-sha2-256

• rsa-sha2-512

The following unsecure SHA1 algorithms are supported but disabled by default:

• (ssh-dss)

• (ssh-rsa)

See Disabled public key algorithms can be enabled with the preferred_algorithms or modify_algorithms options.
See Example 9 in Configuring algorithms in SSH for a description.

MAC algorithms

• hmac-sha2-256-etm@openssh.com

• hmac-sha2-512-etm@openssh.com

• hmac-sha1-etm@openssh.com

• hmac-sha2-256

• hmac-sha2-512

• hmac-sha1

The following unsecure SHA1 algorithm is disabled by default:

• (hmac-sha1-96)

It can be enabled with the preferred_algorithms or modify_algorithms options. Use for example the Option value
{modify_algorithms, [{append, [{mac,['hmac-sha1-96']}]}]})

Encryption algorithms (ciphers)

• chacha20-poly1305@openssh.com

• aes256-gcm@openssh.com

• aes256-ctr

• aes192-ctr

• aes128-gcm@openssh.com

• aes128-ctr

• aes256-cbc

• aes192-cbc

• aes128-cbc

• 3des-cbc

• (AEAD_AES_128_GCM, not enabled per default)

• (AEAD_AES_256_GCM, not enabled per default)

See the text at the description of the rfc 5647 further down for more information regarding AEAD_AES_*_GCM.

32 | Ericsson AB. All Rights Reserved.: SSH

SSH

Following the internet de-facto standard, the cipher and mac algorithm AEAD_AES_128_GCM is selected when
the cipher aes128-gcm@openssh.com is negotiated. The cipher and mac algorithm AEAD_AES_256_GCM is
selected when the cipher aes256-gcm@openssh.com is negotiated.

Compression algorithms

• none

• zlib@openssh.com

• zlib

Unicode support
Unicode filenames are supported if the emulator and the underlying OS support it. See section DESCRIPTION in the
file manual page in Kernel for information about this subject.

The shell and the cli both support unicode.

Rfcs
The following rfc:s are supported:

• RFC 4251, The Secure Shell (SSH) Protocol Architecture.

Except

• 9.4.6 Host-Based Authentication

• 9.5.2 Proxy Forwarding

• 9.5.3 X11 Forwarding

• RFC 4252, The Secure Shell (SSH) Authentication Protocol.

Except

• 9. Host-Based Authentication: "hostbased"

• RFC 4253, The Secure Shell (SSH) Transport Layer Protocol.

Except

• 8.1. diffie-hellman-group1-sha1

• 6.6. Public Key Algorithms

• ssh-dss

• ssh-rsa

They are disabled by default as they now are regarded insecure, but they can be enabled with the
preferred_algorithms or modify_algorithms options. See Example 8 (diffie-hellman-group1-sha1) and Example
9 (ssh-dss) in Configuring algorithms in SSH for descriptions.

• RFC 4254, The Secure Shell (SSH) Connection Protocol.

Except

• 6.3. X11 Forwarding

• 7. TCP/IP Port Forwarding

Ericsson AB. All Rights Reserved.: SSH | 33

href
href
href
href

SSH

• RFC 4256, Generic Message Exchange Authentication for the Secure Shell Protocol (SSH).

Except

• num-prompts > 1

• password changing

• other identification methods than userid-password

• RFC 4419, Diffie-Hellman Group Exchange for the Secure Shell (SSH) Transport Layer Protocol.

Except

• 4.1. diffie-hellman-group-exchange-sha1

It is disabled by defaultas as it now is regarded insecure, but it can be enabled with the preferred_algorithms or
modify_algorithms options.

• RFC 4716, The Secure Shell (SSH) Public Key File Format.

• RFC 5647, AES Galois Counter Mode for the Secure Shell Transport Layer Protocol.

There is an ambiguity in the synchronized selection of cipher and mac algorithm. This is resolved by OpenSSH
in the ciphers aes128-gcm@openssh.com and aes256-gcm@openssh.com which are implemented. If the explicit
ciphers and macs AEAD_AES_128_GCM or AEAD_AES_256_GCM are needed, they could be enabled with
the options preferred_algorithms or modify_algorithms.

Warning:

If the client or the server is not Erlang/OTP, it is the users responsibility to check that other implementation
has the same interpretation of AEAD_AES_*_GCM as the Erlang/OTP SSH before enabling them. The aes*-
gcm@openssh.com variants are always safe to use since they lack the ambiguity.

The second paragraph in section 5.1 is resolved as:

• If the negotiated cipher is AEAD_AES_128_GCM, the mac algorithm is set to AEAD_AES_128_GCM.

• If the negotiated cipher is AEAD_AES_256_GCM, the mac algorithm is set to AEAD_AES_256_GCM.

• If the mac algorithm is AEAD_AES_128_GCM, the cipher is set to AEAD_AES_128_GCM.

• If the mac algorithm is AEAD_AES_256_GCM, the cipher is set to AEAD_AES_256_GCM.

The first rule that matches when read in order from the top is applied

• RFC 5656, Elliptic Curve Algorithm Integration in the Secure Shell Transport Layer.

Except

• 5. ECMQV Key Exchange

• 6.4. ECMQV Key Exchange and Verification Method Name

• 7.2. ECMQV Message Numbers

• 10.2. Recommended Curves

• RFC 6668, SHA-2 Data Integrity Verification for the Secure Shell (SSH) Transport Layer Protocol

Comment: Defines hmac-sha2-256 and hmac-sha2-512

34 | Ericsson AB. All Rights Reserved.: SSH

href
href
href
href
href
href

SSH

• Draft-ietf-curdle-ssh-kex-sha2 (work in progress), Key Exchange (KEX) Method Updates and
Recommendations for Secure Shell (SSH).

Deviations:

• diffie-hellman-group1-sha1

• diffie-hellman-group-exchange-sha1

• diffie-hellman-group14-sha1

are not enabled by default as they now are regarded insecure, but are still supported and can be enabled with the
options preferred_algorithms or modify_algorithms.

• RFC 8332, Use of RSA Keys with SHA-256 and SHA-512 in the Secure Shell (SSH) Protocol.

• RFC 8308, Extension Negotiation in the Secure Shell (SSH) Protocol.

Implemented are:

• The Extension Negotiation Mechanism

• The extension server-sig-algs

• Secure Shell (SSH) Key Exchange Method Using Curve25519 and Curve448

• RFC 8709 Ed25519 and Ed448 public key algorithms for the Secure Shell (SSH) protocol

SEE ALSO
application(3)

Ericsson AB. All Rights Reserved.: SSH | 35

href
href
href
href
href

ssh

ssh
Erlang module

This is the interface module for the SSH application. The Secure Shell (SSH) Protocol is a protocol for secure remote
login and other secure network services over an insecure network. See ssh(6) for details of supported RFCs, versions,
algorithms and unicode handling.

With the SSH application it is possible to start clients and to start daemons (servers).

Clients are started with connect/2, connect/3 or connect/4. They open an encrypted connection on top of TCP/IP. In
that encrypted connection one or more channels could be opened with ssh_connection:session_channel/2,4.

Each channel is an isolated "pipe" between a client-side process and a server-side process. Those process pairs could
handle for example file transfers (sftp) or remote command execution (shell, exec and/or cli). If a custom shell is
implemented, the user of the client could execute the special commands remotely. Note that the user is not necessarily
a human but probably a system interfacing the SSH app.

A server-side subssystem (channel) server is requested by the client with ssh_connection:subsystem/4.

A server (daemon) is started with daemon/1, daemon/2 or daemon/3. Possible channel handlers (subsystems) are
declared with the subsystem option when the daemon is started.

To just run a shell on a remote machine, there are functions that bundles the needed three steps needed into one:
shell/1,2,3. Similarly, to just open an sftp (file transfer) connection to a remote machine, the simplest way is to use
ssh_sftp:start_channel/1,2,3.

To write your own client channel handler, use the behaviour ssh_client_channel. For server channel handlers use
ssh_server_channel behaviour (replaces ssh_daemon_channel).

Both clients and daemons accepts options that controls the exact behaviour. Some options are common to both. The
three sets are called Client Options, Daemon Options and Common Options.

The descriptions of the options uses the Erlang Type Language with explaining text.

Note:

The User's Guide has examples and a Getting Started section.

Keys and files
A number of objects must be present for the SSH application to work. Those objects are per default stored in files. The
default names, paths and file formats are the same as for OpenSSH. Keys could be generated with the ssh-keygen
program from OpenSSH. See the User's Guide.

The paths could easily be changed by options: user_dir and system_dir.

A completely different storage could be interfaced by writing call-back modules using the behaviours
ssh_client_key_api and/or ssh_server_key_api. A callback module is installed with the option key_cb to the client
and/or the daemon.

Daemons
The keys are by default stored in files:

36 | Ericsson AB. All Rights Reserved.: SSH

href

ssh

• Mandatory: one or more Host key(s), both private and public. Default is to store them in the directory /etc/
ssh in the files

• ssh_host_dsa_key and ssh_host_dsa_key.pub

• ssh_host_rsa_key and ssh_host_rsa_key.pub

• ssh_host_ecdsa_key and ssh_host_ecdsa_key.pub

The host keys directory could be changed with the option system_dir.

• Optional: one or more User's public key in case of publickey authorization. Default is to store them
concatenated in the file .ssh/authorized_keys in the user's home directory.

The user keys directory could be changed with the option user_dir.

Clients
The keys and some other data are by default stored in files in the directory .ssh in the user's home directory.

The directory could be changed with the option user_dir.

• Optional: a list of Host public key(s) for previously connected hosts. This list is handled by the SSH application
without any need of user assistance. The default is to store them in the file known_hosts.

The host_accepting_client_options() are associated with this list of keys.

• Optional: one or more User's private key(s) in case of publickey authorization. The default files are

• id_dsa and id_dsa.pub

• id_rsa and id_rsa.pub

• id_ecdsa and id_ecdsa.pub

Data Types
Client Options
client_options() = [client_option()]
client_option() =
 ssh_file:pubkey_passphrase_client_options() |
 host_accepting_client_options() |
 authentication_client_options() |
 diffie_hellman_group_exchange_client_option() |
 connect_timeout_client_option() |
 recv_ext_info_client_option() |
 opaque_client_options() |
 gen_tcp:connect_option() |
 common_option()
Options for clients. The individual options are further explained below or by following the hyperlinks.

Note that not every gen_tcp:connect_option() is accepted. See set_sock_opts/2 for a list of prohibited options.

Also note that setting a gen_tcp:connect_option() could change the socket in a way that impacts the ssh client's
behaviour negatively. You use it on your own risk.

host_accepting_client_options() =
 {silently_accept_hosts, accept_hosts()} |
 {user_interaction, boolean()} |
 {save_accepted_host, boolean()} |
 {quiet_mode, boolean()}
accept_hosts() =
 boolean() |

Ericsson AB. All Rights Reserved.: SSH | 37

ssh

 accept_callback() |
 {HashAlgoSpec :: fp_digest_alg(), accept_callback()}
fp_digest_alg() = md5 | crypto:sha1() | crypto:sha2()
accept_callback() =
 fun((PeerName :: string(), fingerprint()) -> boolean()) |
 fun((PeerName :: string(),
 Port :: inet:port_number(),
 fingerprint()) ->
 boolean())
fingerprint() = string() | [string()]
silently_accept_hosts

This option guides the connect function on how to act when the connected server presents a Host Key that the
client has not seen before. The default is to ask the user with a question on stdio of whether to accept or reject the
new Host Key. See the option user_dir for specifying the path to the file known_hosts where previously
accepted Host Keys are recorded. See also the option key_cb for the general way to handle keys.

The option can be given in three different forms as seen above:

• The value is a boolean(). The value true will make the client accept any unknown Host Key without
any user interaction. The value false preserves the default behaviour of asking the user on stdio.

• An accept_callback() will be called and the boolean return value true will make the client accept
the Host Key. A return value of false will make the client to reject the Host Key and as a result the
connection will be closed. The arguments to the fun are:

• PeerName - a string with the name or address of the remote host.

• FingerPrint - the fingerprint of the Host Key as hostkey_fingerprint/1 calculates it.

• A tuple {HashAlgoSpec, accept_callback}. The HashAlgoSpec specifies which hash
algorithm shall be used to calculate the fingerprint used in the call of the accept_callback(). The
HashALgoSpec is either an atom or a list of atoms as the first argument in hostkey_fingerprint/2. If it is
a list of hash algorithm names, the FingerPrint argument in the accept_callback() will be a list
of fingerprints in the same order as the corresponding name in the HashAlgoSpec list.

user_interaction

If false, disables the client to connect to the server if any user interaction is needed, such as accepting the server
to be added to the known_hosts file, or supplying a password.

Even if user interaction is allowed it can be suppressed by other options, such as silently_accept_hosts
and password. However, those options are not always desirable to use from a security point of view.

Defaults to true.

save_accepted_host

If true, the client saves an accepted host key to avoid the accept question the next time the same host is
connected. If the option key_cb is not present, the key is saved in the file "known_hosts". See option user_dir
for the location of that file.

If false, the key is not saved and the key will still be unknown at the next access of the same host.

Defaults to true

quiet_mode

If true, the client does not print anything on authorization.

Defaults to false

authentication_client_options() =

38 | Ericsson AB. All Rights Reserved.: SSH

ssh

 {user, string()} | {password, string()}
user

Provides the username. If this option is not given, ssh reads from the environment (LOGNAME or USER on
UNIX, USERNAME on Windows).

password

Provides a password for password authentication. If this option is not given, the user is asked for a password, if
the password authentication method is attempted.

diffie_hellman_group_exchange_client_option() =
 {dh_gex_limits,
 {Min :: integer() >= 1,
 I :: integer() >= 1,
 Max :: integer() >= 1}}
Sets the three diffie-hellman-group-exchange parameters that guides the connected server in choosing a group. See
RFC 4419 for the details. The default value is {1024, 6144, 8192}.

connect_timeout_client_option() = {connect_timeout, timeout()}
Sets a timeout on the transport layer connect time. For gen_tcp the time is in milli-seconds and the default value
is infinity.

See the parameter Timeout in connect/4 for a timeout of the negotiation phase.

recv_ext_info_client_option() = {recv_ext_info, boolean()}
Make the client tell the server that the client accepts extension negotiation, that is, include ext-info-c in the kexinit
message sent. See RFC 8308 for details and ssh(6) for a list of currently implemented extensions.

Default value is true which is compatible with other implementations not supporting ext-info.

Daemon Options (Server Options)
daemon_options() = [daemon_option()]
daemon_option() =
 subsystem_daemon_option() |
 shell_daemon_option() |
 exec_daemon_option() |
 ssh_cli_daemon_option() |
 tcpip_tunnel_out_daemon_option() |
 tcpip_tunnel_in_daemon_option() |
 authentication_daemon_options() |
 diffie_hellman_group_exchange_daemon_option() |
 max_initial_idle_time_daemon_option() |
 negotiation_timeout_daemon_option() |
 hello_timeout_daemon_option() |
 hardening_daemon_options() |
 callbacks_daemon_options() |
 send_ext_info_daemon_option() |
 opaque_daemon_options() |
 gen_tcp:listen_option() |
 common_option()
Options for daemons. The individual options are further explained below or by following the hyperlinks.

Note that not every gen_tcp:listen_option() is accepted. See set_sock_opts/2 for a list of prohibited options.

Ericsson AB. All Rights Reserved.: SSH | 39

href
href

ssh

Also note that setting a gen_tcp:listen_option() could change the socket in a way that impacts the ssh deamon's
behaviour negatively. You use it on your own risk.

subsystem_daemon_option() = {subsystems, subsystem_specs()}
subsystem_specs() = [subsystem_spec()]
subsystem_spec() = {Name :: string(), mod_args()}
Defines a subsystem in the daemon.

The subsystem_name is the name that a client requests to start with for example ssh_connection:subsystem/4.

The channel_callback is the module that implements the ssh_server_channel (replaces ssh_daemon_channel)
behaviour in the daemon. See the section Creating a Subsystem in the User's Guide for more information and an
example.

If the subsystems option is not present, the value of ssh_sftpd:subsystem_spec([]) is used. This enables the
sftp subsystem by default. The option can be set to the empty list if you do not want the daemon to run any subsystems.

shell_daemon_option() = {shell, shell_spec()}
shell_spec() = mod_fun_args() | shell_fun() | disabled
shell_fun() = 'shell_fun/1'() | 'shell_fun/2'()
'shell_fun/1'() = fun((User :: string()) -> pid())
'shell_fun/2'() =
 fun((User :: string(), PeerAddr :: inet:ip_address()) -> pid())
Defines the read-eval-print loop used in a daemon when a shell is requested by the client. The default is to use the
Erlang shell: {shell, start, []}

See the option exec-option for a description of how the daemon executes shell-requests and exec-requests
depending on the shell- and exec-options.

exec_daemon_option() = {exec, exec_spec()}
exec_spec() =
 {direct, exec_fun()} | disabled | deprecated_exec_opt()
exec_fun() = 'exec_fun/1'() | 'exec_fun/2'() | 'exec_fun/3'()
'exec_fun/1'() = fun((Cmd :: string()) -> exec_result())
'exec_fun/2'() =
 fun((Cmd :: string(), User :: string()) -> exec_result())
'exec_fun/3'() =
 fun((Cmd :: string(),
 User :: string(),
 ClientAddr :: ip_port()) ->
 exec_result())
exec_result() =
 {ok, Result :: term()} | {error, Reason :: term()}
This option changes how the daemon executes exec-requests from clients. The term in the return value is formatted to
a string if it is a non-string type. No trailing newline is added in the ok-case.

See the User's Guide section on One-Time Execution for examples.

Error texts are returned on channel-type 1 which usually is piped to stderr on e.g Linux systems. Texts from a
successful execution are returned on channel-type 0 and will in similar manner be piped to stdout. The exit-status
code is set to 0 for success and 255 for errors. The exact results presented on the client side depends on the client
and the client's operating system.

40 | Ericsson AB. All Rights Reserved.: SSH

ssh

In case of the {direct, exec_fun()} variant or no exec-option at all, all reads from standard_input will
be from the received data-events of type 0. Those are sent by the client. Similarly all writes to standard_output
will be sent as data-events to the client. An OS shell client like the command 'ssh' will usually use stdin and stdout
for the user interface.

The option cooperates with the daemon-option shell in the following way:

1. If neither the exec-option nor the shell-option is present:

The default Erlang evaluator is used both for exec and shell requests. The result is returned to the client.

2. If the exec_spec's value is disabled (the shell-option may or may not be present):

No exec-requests are executed but shell-requests are not affected, they follow the shell_spec's value.

3. If the exec-option is present and the exec_spec value =/= disabled (the shell-option may or may
not be present):

The exec_spec fun() is called with the same number of parameters as the arity of the fun, and the result is
returned to the client. Shell-requests are not affected, they follow the shell_spec's value.

4. If the exec-option is absent, and the shell-option is present with the default Erlang shell as the
shell_spec's value:

The default Erlang evaluator is used both for exec and shell requests. The result is returned to the client.

5. If the exec-option is absent, and the shell-option is present with a value that is neither the default
Erlang shell nor the value disabled:

The exec-request is not evaluated and an error message is returned to the client. Shell-requests are executed
according to the value of the shell_spec.

6. If the exec-option is absent, and the shell_spec's value is disabled:

Exec requests are executed by the default shell, but shell-requests are not executed.

If a custom CLI is installed (see the option ssh_cli) the rules above are replaced by thoose implied by the custom
CLI.

Note:

The exec-option has existed for a long time but has not previously been documented. The old definition and
behaviour are retained but obey the rules 1-6 above if conflicting. The old and undocumented style should not be
used in new programs.

deprecated_exec_opt() = function() | mod_fun_args()
Old-style exec specification that are kept for compatibility, but should not be used in new programs

ssh_cli_daemon_option() = {ssh_cli, mod_args() | no_cli}
Provides your own CLI implementation in a daemon.

It is a channel callback module that implements a shell and command execution. The shell's read-eval-print loop can
be customized, using the option shell. This means less work than implementing an own CLI channel. If ssh_cli
is set to no_cli, the CLI channels like shell and exec are disabled and only subsystem channels are allowed.

authentication_daemon_options() =
 ssh_file:system_dir_daemon_option() |
 {auth_method_kb_interactive_data, prompt_texts()} |
 {user_passwords, [{UserName :: string(), Pwd :: string()}]} |
 {pk_check_user, boolean()} |
 {password, string()} |

Ericsson AB. All Rights Reserved.: SSH | 41

ssh

 {pwdfun, pwdfun_2() | pwdfun_4()} |
 {no_auth_needed, boolean()}
prompt_texts() =
 kb_int_tuple() | kb_int_fun_3() | kb_int_fun_4()
kb_int_tuple() =
 {Name :: string(),
 Instruction :: string(),
 Prompt :: string(),
 Echo :: boolean()}
kb_int_fun_3() =
 fun((Peer :: ip_port(), User :: string(), Service :: string()) ->
 kb_int_tuple())
kb_int_fun_4() =
 fun((Peer :: ip_port(),
 User :: string(),
 Service :: string(),
 State :: any()) ->
 kb_int_tuple())
pwdfun_2() =
 fun((User :: string(), Password :: string() | pubkey) ->
 boolean())
pwdfun_4() =
 fun((User :: string(),
 Password :: string() | pubkey,
 PeerAddress :: ip_port(),
 State :: any()) ->
 boolean() |
 disconnect |
 {boolean(), NewState :: any()})
auth_method_kb_interactive_data

Sets the text strings that the daemon sends to the client for presentation to the user when using keyboard-
interactive authentication.

If the fun/3 or fun/4 is used, it is called when the actual authentication occurs and may therefore return dynamic
data like time, remote ip etc.

The parameter Echo guides the client about need to hide the password.

The default value is: {auth_method_kb_interactive_data, {"SSH server", "Enter
password for \""++User++"\"", "password: ", false}>

user_passwords

Provides passwords for password authentication. The passwords are used when someone tries to connect to
the server and public key user-authentication fails. The option provides a list of valid usernames and the
corresponding passwords.

Warning:

Note that this is very insecure due to the plain-text passwords; it is intended for test purposes. Use the pwdfun
option to handle the password checking instead.

42 | Ericsson AB. All Rights Reserved.: SSH

ssh

pk_check_user

Enables checking of the client's user name in the server when doing public key authentication. It is disabled by
default.

The term "user" is used differently in OpenSSH and SSH in Erlang/OTP: see more in the User's Guide.

If the option is enabled, and no pwdfun is present, the user name must present in the user_passwords for the
check to succeed but the value of the password is not checked.

In case of a pwdfun checking the user, the atom pubkey is put in the password argument.

password

Provides a global password that authenticates any user.

Warning:

Intended to facilitate testing.

From a security perspective this option makes the server very vulnerable.

pwdfun with pwdfun_4()

Provides a function for password validation. This could used for calling an external system or handling passwords
stored as hash values.

This fun can also be used to make delays in authentication tries for example by calling timer:sleep/1.

To facilitate for instance counting of failed tries, the State variable could be used. This state is per connection
only. The first time the pwdfun is called for a connection, the State variable has the value undefined.

The fun should return:

• true if the user and password is valid

• false if the user or password is invalid

• disconnect if a SSH_MSG_DISCONNECT message should be sent immediately. It will be followed
by a close of the underlying tcp connection.

• {true, NewState:any()} if the user and password is valid

• {false, NewState:any()} if the user or password is invalid

A third usage is to block login attempts from a missbehaving peer. The State described above can be used for
this. The return value disconnect is useful for this.

In case of the pk_check_user is set, the atom pubkey is put in the password argument when validating a
public key login. The pwdfun is then responsible to check that the user name is valid.

pwdfun with pwdfun_2()

Provides a function for password validation. This function is called with user and password as strings, and returns:

• true if the user and password is valid

• false if the user or password is invalid

In case of the pk_check_user is set, the atom pubkey is put in the password argument when validating a
public key login. The pwdfun is then responsible to check that the user name is valid.

This variant is kept for compatibility.

no_auth_needed

If true, a client is authenticated without any need of providing any password or key.

This option is only intended for very special applications due to the high risk of accepting any connecting client.

Ericsson AB. All Rights Reserved.: SSH | 43

ssh

The default value is false.

diffie_hellman_group_exchange_daemon_option() =
 {dh_gex_groups,
 [explicit_group()] |
 explicit_group_file() |
 ssh_moduli_file()} |
 {dh_gex_limits, {Min :: integer() >= 1, Max :: integer() >= 1}}
explicit_group() =
 {Size :: integer() >= 1,
 G :: integer() >= 1,
 P :: integer() >= 1}
explicit_group_file() = {file, string()}
ssh_moduli_file() = {ssh_moduli_file, string()}
dh_gex_groups

Defines the groups the server may choose among when diffie-hellman-group-exchange is negotiated. See RFC
4419 for details. The three variants of this option are:

{Size=integer(),G=integer(),P=integer()}
The groups are given explicitly in this list. There may be several elements with the same Size. In such a
case, the server will choose one randomly in the negotiated Size.

{file,filename()}
The file must have one or more three-tuples {Size=integer(),G=integer(),P=integer()}
terminated by a dot. The file is read when the daemon starts.

{ssh_moduli_file,filename()}
The file must be in ssh-keygen moduli file format. The file is read when the daemon starts.

The default list is fetched from the public_key application.

dh_gex_limits

Limits what a client can ask for in diffie-hellman-group-exchange. The limits will be {MaxUsed =
min(MaxClient,Max), MinUsed = max(MinClient,Min)} where MaxClient and MinClient
are the values proposed by a connecting client.

The default value is {0,infinity}.

If MaxUsed < MinUsed in a key exchange, it will fail with a disconnect.

See RFC 4419 for the function of the Max and Min values.

hello_timeout_daemon_option() = {hello_timeout, timeout()}
Maximum time in milliseconds for the first part of the ssh session setup, the hello message exchange. Defaults to
30000 ms (30 seconds). If the client fails to send the first message within this time, the connection is closed.

For more information about timeouts, see the Timeouts section in the User's Guide Hardening chapter.

negotiation_timeout_daemon_option() =
 {negotiation_timeout, timeout()}
Maximum time in milliseconds for the authentication negotiation. Defaults to 120000 ms (2 minutes). If the client
fails to log in within this time, the connection is closed.

For more information about timeouts, see the Timeouts section in the User's Guide Hardening chapter.

max_initial_idle_time_daemon_option() =

44 | Ericsson AB. All Rights Reserved.: SSH

href
href
href

ssh

 {max_initial_idle_time, timeout()}
Maximum time in milliseconds for the first channel start after completion of the authentication negotiation. Defaults
to infinity.

For more information about timeouts, see the Timeouts section in the User's Guide Hardening chapter.

hardening_daemon_options() =
 {max_sessions, integer() >= 1} |
 {max_channels, integer() >= 1} |
 {parallel_login, boolean()} |
 {minimal_remote_max_packet_size, integer() >= 1}
For more information about hardening, see the Hardening section in the User's Guide chapter.

max_sessions

The maximum number of simultaneous sessions that are accepted at any time for this daemon. This includes
sessions that are being authorized. Thus, if set to N, and N clients have connected but not started the login process,
connection attempt N+1 is aborted. If N connections are authenticated and still logged in, no more logins are
accepted until one of the existing ones log out.

The counter is per listening port. Thus, if two daemons are started, one with {max_sessions,N} and the other
with {max_sessions,M}, in total N+M connections are accepted for the whole ssh application.

Notice that if parallel_login is false, only one client at a time can be in the authentication phase.

By default, this option is not set. This means that the number is not limited.

max_channels

The maximum number of channels with active remote subsystem that are accepted for each connection to this
daemon

By default, this option is not set. This means that the number is not limited.

parallel_login

If set to false (the default value), only one login is handled at a time. If set to true, an unlimited number of login
attempts are allowed simultaneously.

If the max_sessions option is set to N and parallel_login is set to true, the maximum number of
simultaneous login attempts at any time is limited to N-K, where K is the number of authenticated connections
present at this daemon.

Warning:

Do not enable parallel_logins without protecting the server by other means, for example, by the
max_sessions option or a firewall configuration. If set to true, there is no protection against DOS attacks.

minimal_remote_max_packet_size

The least maximum packet size that the daemon will accept in channel open requests from the client. The default
value is 0.

callbacks_daemon_options() =
 {failfun,
 fun((User :: string(),
 PeerAddress :: inet:ip_address(),
 Reason :: term()) ->
 term())} |
 {connectfun,

Ericsson AB. All Rights Reserved.: SSH | 45

ssh

 fun((User :: string(),
 PeerAddress :: inet:ip_address(),
 Method :: string()) ->
 term())}
connectfun

Provides a fun to implement your own logging when a user authenticates to the server.

failfun

Provides a fun to implement your own logging when a user fails to authenticate.

send_ext_info_daemon_option() = {send_ext_info, boolean()}
Make the server (daemon) tell the client that the server accepts extension negotiation, that is, include ext-info-s
in the kexinit message sent. See RFC 8308 for details and ssh(6) for a list of currently implemented extensions.

Default value is true which is compatible with other implementations not supporting ext-info.

tcpip_tunnel_in_daemon_option() = {tcpip_tunnel_in, boolean()}
Enables (true) or disables (false) the possibility to tunnel a TCP/IP connection in to a server. Disabled per default.

tcpip_tunnel_out_daemon_option() =
 {tcpip_tunnel_out, boolean()}
Enables (true) or disables (false) the possibility to tunnel a TCP/IP connection out of a server. Disabled per default.

Options common to clients and daemons
common_options() = [common_option()]
common_option() =
 ssh_file:user_dir_common_option() |
 profile_common_option() |
 max_idle_time_common_option() |
 max_log_item_len_common_option() |
 key_cb_common_option() |
 disconnectfun_common_option() |
 unexpectedfun_common_option() |
 ssh_msg_debug_fun_common_option() |
 rekey_limit_common_option() |
 id_string_common_option() |
 pref_public_key_algs_common_option() |
 preferred_algorithms_common_option() |
 modify_algorithms_common_option() |
 auth_methods_common_option() |
 inet_common_option() |
 fd_common_option()
The options above can be used both in clients and in daemons (servers). They are further explained below.

profile_common_option() = {profile, atom()}
Used together with ip-address and port to uniquely identify a ssh daemon. This can be useful in a virtualized
environment, where there can be more that one server that has the same ip-address and port. If this property is
not explicitly set, it is assumed that the the ip-address and port uniquely identifies the SSH daemon.

max_idle_time_common_option() = {idle_time, timeout()}
Sets a time-out on a connection when no channels are open. Defaults to infinity. The unit is milliseconds.

46 | Ericsson AB. All Rights Reserved.: SSH

href

ssh

The timeout is not active until channels are started, so it does not limit the time from the connection creation to the
first channel opening.

For more information about timeouts, see the Timeouts section in the User's Guide Hardening chapter.

max_log_item_len_common_option() =
 {max_log_item_len, limit_bytes()}
Sets a limit for the size of a logged item excluding a header. The unit is bytes and the value defaults to 500.

rekey_limit_common_option() =
 {rekey_limit,
 Bytes ::
 limit_bytes() |
 {Minutes :: limit_time(), Bytes :: limit_bytes()}}
limit_bytes() = integer() >= 0 | infinity
limit_time() = integer() >= 1 | infinity
Sets the limit when rekeying is to be initiated. Both the max time and max amount of data could be configured:

• {Minutes, Bytes} initiate rekeying when any of the limits are reached.

• Bytes initiate rekeying when Bytes number of bytes are transferred, or at latest after one hour.

When a rekeying is done, both the timer and the byte counter are restarted. Defaults to one hour and one GByte.

If Minutes is set to infinity, no rekeying will ever occur due to that max time has passed. Setting Bytes
to infinity will inhibit rekeying after a certain amount of data has been transferred. If the option value is set
to {infinity, infinity}, no rekeying will be initiated. Note that rekeying initiated by the peer will still be
performed.

key_cb_common_option() =
 {key_cb,
 Module :: atom() | {Module :: atom(), Opts :: [term()]}}
Module implementing the behaviour ssh_client_key_api and/or ssh_server_key_api. Can be used to customize the
handling of public keys. If callback options are provided along with the module name, they are made available to the
callback module via the options passed to it under the key 'key_cb_private'.

The Opts defaults to [] when only the Module is specified.

The default value of this option is {ssh_file, []}. See also the manpage of ssh_file.

A call to the call-back function F will be

 Module:F(..., [{key_cb_private,Opts}|UserOptions])

where ... are arguments to F as in ssh_client_key_api and/or ssh_server_key_api. The UserOptions are the
options given to ssh:connect, ssh:shell or ssh:daemon.

pref_public_key_algs_common_option() =
 {pref_public_key_algs, [pubkey_alg()]}
List of user (client) public key algorithms to try to use.

The default value is the public_key entry in the list returned by ssh:default_algorithms/0.

If there is no public key of a specified type available, the corresponding entry is ignored. Note that the available set
is dependent on the underlying cryptolib and current user's public keys.

See also the option user_dir for specifying the path to the user's keys.

disconnectfun_common_option() =

Ericsson AB. All Rights Reserved.: SSH | 47

ssh

 {disconnectfun, fun((Reason :: term()) -> void | any())}
Provides a fun to implement your own logging or other handling at disconnects.

unexpectedfun_common_option() =
 {unexpectedfun,
 fun((Message :: term(), {Host :: term(), Port :: term()}) ->
 report | skip)}
Provides a fun to implement your own logging or other action when an unexpected message arrives. If the fun returns
report the usual info report is issued but if skip is returned no report is generated.

ssh_msg_debug_fun_common_option() =
 {ssh_msg_debug_fun,
 fun((ssh:connection_ref(),
 AlwaysDisplay :: boolean(),
 Msg :: binary(),
 LanguageTag :: binary()) ->
 any())}
Provide a fun to implement your own logging of the SSH message SSH_MSG_DEBUG. The last three parameters
are from the message, see RFC 4253, section 11.3. The connection_ref() is the reference to the connection on
which the message arrived. The return value from the fun is not checked.

The default behaviour is ignore the message. To get a printout for each message with AlwaysDisplay = true,
use for example {ssh_msg_debug_fun, fun(_,true,M,_)-> io:format("DEBUG: ~p~n", [M])
end}

id_string_common_option() =
 {id_string,
 string() |
 random |
 {random, Nmin :: integer() >= 1, Nmax :: integer() >= 1}}
The string the daemon will present to a connecting peer initially. The default value is "Erlang/VSN" where VSN is
the ssh application version number.

The value random will cause a random string to be created at each connection attempt. This is to make it a bit more
difficult for a malicious peer to find the ssh software brand and version.

The value {random, Nmin, Nmax} will make a random string with at least Nmin characters and at most Nmax
characters.

preferred_algorithms_common_option() =
 {preferred_algorithms, algs_list()}
algs_list() = [alg_entry()]
alg_entry() =
 {kex, [kex_alg()]} |
 {public_key, [pubkey_alg()]} |
 {cipher, double_algs(cipher_alg())} |
 {mac, double_algs(mac_alg())} |
 {compression, double_algs(compression_alg())}
kex_alg() =
 'diffie-hellman-group-exchange-sha1' |
 'diffie-hellman-group-exchange-sha256' |
 'diffie-hellman-group1-sha1' | 'diffie-hellman-group14-sha1' |
 'diffie-hellman-group14-sha256' |
 'diffie-hellman-group16-sha512' |

48 | Ericsson AB. All Rights Reserved.: SSH

href

ssh

 'diffie-hellman-group18-sha512' | 'curve25519-sha256' |
 'curve25519-sha256@libssh.org' | 'curve448-sha512' |
 'ecdh-sha2-nistp256' | 'ecdh-sha2-nistp384' |
 'ecdh-sha2-nistp521'
pubkey_alg() =
 'ecdsa-sha2-nistp256' | 'ecdsa-sha2-nistp384' |
 'ecdsa-sha2-nistp521' | 'ssh-ed25519' | 'ssh-ed448' |
 'rsa-sha2-256' | 'rsa-sha2-512' | 'ssh-dss' | 'ssh-rsa'
cipher_alg() =
 '3des-cbc' | 'AEAD_AES_128_GCM' | 'AEAD_AES_256_GCM' |
 'aes128-cbc' | 'aes128-ctr' | 'aes128-gcm@openssh.com' |
 'aes192-ctr' | 'aes192-cbc' | 'aes256-cbc' | 'aes256-ctr' |
 'aes256-gcm@openssh.com' | 'chacha20-poly1305@openssh.com'
mac_alg() =
 'AEAD_AES_128_GCM' | 'AEAD_AES_256_GCM' | 'hmac-sha1' |
 'hmac-sha1-etm@openssh.com' | 'hmac-sha1-96' |
 'hmac-sha2-256' | 'hmac-sha2-512' |
 'hmac-sha2-256-etm@openssh.com' |
 'hmac-sha2-512-etm@openssh.com'
compression_alg() = none | zlib | 'zlib@openssh.com'
double_algs(AlgType) =
 [{client2server, [AlgType]} | {server2client, [AlgType]}] |
 [AlgType]
List of algorithms to use in the algorithm negotiation. The default algs_list() can be obtained from
default_algorithms/0.

If an alg_entry() is missing in the algs_list(), the default value is used for that entry.

Here is an example of this option:

 {preferred_algorithms,
 [{public_key,['ssh-rsa','ssh-dss']},
 {cipher,[{client2server,['aes128-ctr']},
 {server2client,['aes128-cbc','3des-cbc']}]},
 {mac,['hmac-sha2-256','hmac-sha1']},
 {compression,[none,zlib]}
]
 }

The example specifies different algorithms in the two directions (client2server and server2client), for cipher but
specifies the same algorithms for mac and compression in both directions. The kex (key exchange) is implicit but
public_key is set explicitly.

For background and more examples see the User's Guide.

If an algorithm name occurs more than once in a list, the behaviour is undefined. The tags in the property lists are
also assumed to occur at most one time.

Warning:

Changing the values can make a connection less secure. Do not change unless you know exactly what you are
doing. If you do not understand the values then you are not supposed to change them.

modify_algorithms_common_option() =

Ericsson AB. All Rights Reserved.: SSH | 49

ssh

 {modify_algorithms, modify_algs_list()}
modify_algs_list() =
 [{append, algs_list()} |
 {prepend, algs_list()} |
 {rm, algs_list()}]
Modifies the list of algorithms to use in the algorithm negotiation. The modifications are applied after the option
preferred_algorithms (if existing) is applied.

The algorithm for modifications works like this:

• Input is the modify_algs_list() and a set of algorithms A obtained from the preferred_algorithms
option if existing, or else from the ssh:default_algorithms/0.

• The head of the modify_algs_list() modifies A giving the result A'.

The possible modifications are:

• Append or prepend supported but not enabled algorithm(s) to the list of algorithms. If the wanted algorithms
already are in A they will first be removed and then appended or prepended,

• Remove (rm) one or more algorithms from A.

• Repeat the modification step with the tail of modify_algs_list() and the resulting A'.

If an unsupported algorithm is in the modify_algs_list(), it will be silently ignored

If there are more than one modify_algorithms options, the result is undefined.

Here is an example of this option:

 {modify_algorithms,
 [{prepend, [{kex, ['diffie-hellman-group1-sha1']}],
 {rm, [{compression, [none]}]}
]
 }

The example specifies that:

• the old key exchange algorithm 'diffie-hellman-group1-sha1' should be the main alternative. It will be the main
alternative since it is prepened to the list

• The compression algorithm none (= no compression) is removed so compression is enforced

For background and more examples see the User's Guide.

inet_common_option() = {inet, inet | inet6}
IP version to use when the host address is specified as any.

auth_methods_common_option() = {auth_methods, string()}
Comma-separated string that determines which authentication methods that the client shall support and in which order
they are tried. Defaults to "publickey,keyboard-interactive,password"

Note that the client is free to use any order and to exclude methods.

fd_common_option() = {fd, gen_tcp:socket()}
Allows an existing file-descriptor to be used (passed on to the transport protocol).

Other data types
host() = string() | inet:ip_address() | loopback
ip_port() = {inet:ip_address(), inet:port_number()}
mod_args() = {Module :: atom(), Args :: list()}
mod_fun_args() =

50 | Ericsson AB. All Rights Reserved.: SSH

ssh

 {Module :: atom(), Function :: atom(), Args :: list()}
open_socket() = gen_tcp:socket()
The socket is supposed to be result of a gen_tcp:connect or a gen_tcp:accept. The socket must be in passive mode
(that is, opened with the option {active,false}).

daemon_ref()
Opaque data type representing a daemon.

Returned by the functions daemon/1,2,3.

connection_ref()
Opaque data type representing a connection between a client and a server (daemon).

Returned by the functions connect/2,3,4 and ssh_sftp:start_channel/2,3.

channel_id()
Opaque data type representing a channel inside a connection.

Returned by the functions ssh_connection:session_channel/2,4.

connection_info_tuple() =
 {client_version, version()} |
 {server_version, version()} |
 {user, string()} |
 {peer, {inet:hostname(), ip_port()}} |
 {sockname, ip_port()} |
 {options, client_options()} |
 {algorithms, conn_info_algs()} |
 {channels, conn_info_channels()}
version() = {protocol_version(), software_version()}
protocol_version() =
 {Major :: integer() >= 1, Minor :: integer() >= 0}
software_version() = string()
conn_info_algs() =
 [{kex, kex_alg()} |
 {hkey, pubkey_alg()} |
 {encrypt, cipher_alg()} |
 {decrypt, cipher_alg()} |
 {send_mac, mac_alg()} |
 {recv_mac, mac_alg()} |
 {compress, compression_alg()} |
 {decompress, compression_alg()} |
 {send_ext_info, boolean()} |
 {recv_ext_info, boolean()}]
conn_info_channels() = [proplists:proplist()]
Return values from the connection_info/1 and connection_info/2 functions.

In the option info tuple are only the options included that differs from the default values.

daemon_info_tuple() =
 {port, inet:port_number()} |
 {ip, inet:ip_address()} |
 {profile, atom()} |

Ericsson AB. All Rights Reserved.: SSH | 51

ssh

 {options, daemon_options()}
Return values from the daemon_info/1 and daemon_info/2 functions.

In the option info tuple are only the options included that differs from the default values.

opaque_client_options()opaque_daemon_options()opaque_common_options()
Opaque types that define experimental options that are not to be used in products.

Exports

close(ConnectionRef) -> ok | {error, term()}
Types:

ConnectionRef = connection_ref()
Closes an SSH connection.

connect(Host, Port, Options) -> Result
connect(Host, Port, Options, NegotiationTimeout) -> Result
connect(TcpSocket, Options) -> Result
connect(TcpSocket, Options, NegotiationTimeout) -> Result
Types:

Host = host()

Port = inet:port_number()

Options = client_options()

TcpSocket = open_socket()

NegotiationTimeout = timeout()

Result = {ok, connection_ref()} | {error, term()}

Connects to an SSH server at the Host on Port.

As an alternative, an already open TCP socket could be passed to the function in TcpSocket. The SSH initiation
and negotiation will be initiated on that one with the SSH that should be at the other end.

No channel is started. This is done by calling ssh_connection:session_channel/[2, 4].

The NegotiationTimeout is in milli-seconds. The default value is infinity or the value of the
connect_timeout option, if present. For connection timeout, use the option connect_timeout.

connection_info(ConnectionRef) -> InfoTupleList
connection_info(ConnectionRef, Key :: ItemList | Item) ->
 InfoTupleList | InfoTuple
Types:

ConnectionRef = connection_ref()
ItemList = [Item]
Item =
 client_version | server_version | user | peer | sockname |
 options | algorithms | sockname
InfoTupleList = [InfoTuple]
InfoTuple = connection_info_tuple()

Returns information about a connection intended for e.g debugging or logging.

52 | Ericsson AB. All Rights Reserved.: SSH

ssh

When the Key is a single Item, the result is a single InfoTuple

set_sock_opts(ConnectionRef, SocketOptions) ->
 ok | {error, inet:posix()}
Types:

ConnectionRef = connection_ref()
SocketOptions = [gen_tcp:option()]

Sets tcp socket options on the tcp-socket below an ssh connection.

This function calls the inet:setopts/2, read that documentation and for gen_tcp:option().

All gen_tcp socket options except

• active

• deliver

• mode and

• packet

are allowed. The excluded options are reserved by the SSH application.

Warning:

This is an extremely dangerous function. You use it on your own risk.

Some options are OS and OS version dependent. Do not use it unless you know what effect your option values
will have on an TCP stream.

Some values may destroy the functionality of the SSH protocol.

get_sock_opts(ConnectionRef, SocketGetOptions) ->
 ok | {error, inet:posix()}
Types:

ConnectionRef = connection_ref()
SocketGetOptions = [gen_tcp:option_name()]

Get tcp socket option values of the tcp-socket below an ssh connection.

This function calls the inet:getopts/2, read that documentation.

daemon(Port | TcpSocket) -> Result
daemon(Port | TcpSocket, Options) -> Result
daemon(HostAddress, Port, Options) -> Result
Types:

Port = integer()

TcpSocket = open_socket()

Options = daemon_options()

HostAddress = host() | any

Result = {ok, daemon_ref()} | {error, atom()}

Starts a server listening for SSH connections on the given port. If the Port is 0, a random free port is selected. See
daemon_info/1 about how to find the selected port number.

Ericsson AB. All Rights Reserved.: SSH | 53

ssh

As an alternative, an already open TCP socket could be passed to the function in TcpSocket. The SSH initiation
and negotiation will be initiated on that one when an SSH starts at the other end of the TCP socket.

For a description of the options, see Daemon Options.

Please note that by historical reasons both the HostAddress argument and the gen_tcp connect_option()
{ip,Address} set the listening address. This is a source of possible inconsistent settings.

The rules for handling the two address passing options are:

• if HostAddress is an IP-address, that IP-address is the listening address. An 'ip'-option will be discarded if
present.

• if HostAddress is the atom loopback, the listening address is loopback and an loopback address will be
chosen by the underlying layers. An 'ip'-option will be discarded if present.

• if HostAddress is the atom any and no 'ip'-option is present, the listening address is any and the socket will
listen to all addresses

• if HostAddress is any and an 'ip'-option is present, the listening address is set to the value of the 'ip'-option

daemon_replace_options(DaemonRef, NewUserOptions) ->
 {ok, daemon_ref()} | {error, term()}
Types:

DaemonRef = daemon_ref()
NewUserOptions = daemon_options()

Replaces the options in a running daemon with the options in NewUserOptions. Only connections established after
this call are affected, already established connections are not.

Note:

In the final phase of this function, the listening process is restarted. Therfore a connection attempt to the daemon
in this final phase could fail.

The handling of Erlang configurations is described in the User's Guide; see chapters Configuration in SSH and
Configuring algorithms in SSH.

daemon_info(DaemonRef) ->
 {ok, InfoTupleList} | {error, bad_daemon_ref}
daemon_info(DaemonRef, Key :: ItemList | Item) ->
 InfoTupleList | InfoTuple | {error, bad_daemon_ref}
Types:

DaemonRef = daemon_ref()
ItemList = [Item]
Item = ip | port | profile | options
InfoTupleList = [InfoTuple]
InfoTuple = daemon_info_tuple()

Returns information about a daemon intended for e.g debugging or logging.

When the Key is a single Item, the result is a single InfoTuple

Note that daemon_info/1 and daemon_info/2 returns different types due to compatibility reasons.

54 | Ericsson AB. All Rights Reserved.: SSH

ssh

default_algorithms() -> algs_list()
Returns a key-value list, where the keys are the different types of algorithms and the values are the algorithms
themselves.

See the User's Guide for an example.

shell(Host | TcpSocket) -> Result
shell(Host | TcpSocket, Options) -> Result
shell(Host, Port, Options) -> Result
Types:

Host = host()

TcpSocket = open_socket()

Port = inet:port_number()

Options = client_options()

Result = ok | {error, Reason::term()}

Connects to an SSH server at Host and Port (defaults to 22) and starts an interactive shell on that remote host.

As an alternative, an already open TCP socket could be passed to the function in TcpSocket. The SSH initiation and
negotiation will be initiated on that one and finally a shell will be started on the host at the other end of the TCP socket.

For a description of the options, see Client Options.

The function waits for user input, and does not return until the remote shell is ended (that is, exit from the shell).

start() -> ok | {error, term()}
start(Type) -> ok | {error, term()}
Types:

Type = permanent | transient | temporary
Utility function that starts the applications crypto, public_key, and ssh. Default type is temporary. For more
information, see the application(3) manual page in Kernel.

stop() -> ok | {error, term()}
Stops the ssh application. For more information, see the application(3) manual page in Kernel.

stop_daemon(DaemonRef :: daemon_ref()) -> ok
stop_daemon(Address :: inet:ip_address(),
 Port :: inet:port_number()) ->
 ok
stop_daemon(Address :: any | inet:ip_address(),
 Port :: inet:port_number(),
 Profile :: atom()) ->
 ok
Stops the listener and all connections started by the listener.

stop_listener(SysSup :: daemon_ref()) -> ok
stop_listener(Address :: inet:ip_address(),
 Port :: inet:port_number()) ->

Ericsson AB. All Rights Reserved.: SSH | 55

ssh

 ok
stop_listener(Address :: any | inet:ip_address(),
 Port :: inet:port_number(),
 Profile :: term()) ->
 ok
Stops the listener, but leaves existing connections started by the listener operational.

tcpip_tunnel_from_server(ConnectionRef, ListenHost, ListenPort,
 ConnectToHost, ConnectToPort) ->
 {ok, TrueListenPort} | {error, term()}
tcpip_tunnel_from_server(ConnectionRef, ListenHost, ListenPort,
 ConnectToHost, ConnectToPort, Timeout) ->
 {ok, TrueListenPort} | {error, term()}
Types:

ConnectionRef = connection_ref()
ListenHost = host()
ListenPort = inet:port_number()
ConnectToHost = host()
ConnectToPort = inet:port_number()
Timeout = timeout()
TrueListenPort = inet:port_number()

Asks the remote server of ConnectionRef to listen to ListenHost:ListenPort. When someone connects
that address, the connection is forwarded in an encrypted channel from the server to the client. The client (that is, at
the node that calls this function) then connects to ConnectToHost:ConnectToPort.

The returned TrueListenPort is the port that is listened to. It is the same as ListenPort, except when
ListenPort = 0. In that case a free port is selected by the underlying OS.

Note that in case of an Erlang/OTP SSH server (daemon) as peer, that server must have been started with the option
tcpip_tunnel_out to allow the connection.

tcpip_tunnel_to_server(ConnectionRef, ListenHost, ListenPort,
 ConnectToHost, ConnectToPort) ->
 {ok, TrueListenPort} | {error, term()}
tcpip_tunnel_to_server(ConnectionRef, ListenHost, ListenPort,
 ConnectToHost, ConnectToPort, Timeout) ->
 {ok, TrueListenPort} | {error, term()}
Types:

56 | Ericsson AB. All Rights Reserved.: SSH

ssh

ConnectionRef = connection_ref()
ListenHost = host()
ListenPort = inet:port_number()
ConnectToHost = host()
ConnectToPort = inet:port_number()
Timeout = timeout()
TrueListenPort = inet:port_number()

Tells the local client to listen to ListenHost:ListenPort. When someone connects to that address, the
connection is forwarded in an encrypted channel to the peer server of ConnectionRef. That server then connects
to ConnectToHost:ConnectToPort.

The returned TrueListenPort is the port that is listened to. It is the same as ListenPort, except when
ListenPort = 0. In that case a free port is selected by the underlying OS.

Note that in case of an Erlang/OTP SSH server (daemon) as peer, that server must have been started with the option
tcpip_tunnel_in to allow the connection.

hostkey_fingerprint(HostKey) -> string()
hostkey_fingerprint(DigestType, HostKey) -> string()
hostkey_fingerprint([DigestType], HostKey) -> [string()]
Types:

HostKey = public_key:public_key()

DigestType = public_key:digest_type()

Calculates a ssh fingerprint from a public host key as openssh does.

The algorithm in hostkey_fingerprint/1 is md5 to be compatible with older ssh-keygen commands. The string
from the second variant is prepended by the algorithm name in uppercase as in newer ssh-keygen commands.

Examples:

 2> ssh:hostkey_fingerprint(Key).
 "f5:64:a6:c1:5a:cb:9f:0a:10:46:a2:5c:3e:2f:57:84"

 3> ssh:hostkey_fingerprint(md5,Key).
 "MD5:f5:64:a6:c1:5a:cb:9f:0a:10:46:a2:5c:3e:2f:57:84"

 4> ssh:hostkey_fingerprint(sha,Key).
 "SHA1:bSLY/C4QXLDL/Iwmhyg0PGW9UbY"

 5> ssh:hostkey_fingerprint(sha256,Key).
 "SHA256:aZGXhabfbf4oxglxltItWeHU7ub3Dc31NcNw2cMJePQ"

 6> ssh:hostkey_fingerprint([sha,sha256],Key).
 ["SHA1:bSLY/C4QXLDL/Iwmhyg0PGW9UbY",
 "SHA256:aZGXhabfbf4oxglxltItWeHU7ub3Dc31NcNw2cMJePQ"]

Ericsson AB. All Rights Reserved.: SSH | 57

ssh_client_channel

ssh_client_channel
Erlang module

Note:

This module replaces ssh_channel.

The old module is still available for compatibility, but should not be used for new programs. The old module will
not be maintained except for some error corrections

SSH services (clients and servers) are implemented as channels that are multiplexed over an SSH connection and
communicates over the SSH Connection Protocol. This module provides a callback API that takes care of generic
channel aspects for clients, such as flow control and close messages. It lets the callback functions take care of the
service (application) specific parts. This behavior also ensures that the channel process honors the principal of an OTP-
process so that it can be part of a supervisor tree. This is a requirement of channel processes implementing a subsystem
that will be added to the ssh applications supervisor tree.

Note:

When implementing a ssh subsystem for daemons, use -behaviour(ssh_server_channel) (Replaces
ssh_daemon_channel) instead.

Don't:

Functions in this module are not supposed to be called outside a module implementing this behaviour!

Exports

call(ChannelRef, Msg) ->
call(ChannelRef, Msg, Timeout) -> Reply | {error, Reason}
Types:

ChannelRef = pid()

As returned by start_link/4

Msg = term()

Timeout = timeout()

Reply = term()

Reason = closed | timeout

Makes a synchronous call to the channel process by sending a message and waiting until a reply arrives, or a time-out
occurs. The channel calls Module:handle_call/3 to handle the message. If the channel process does not exist, {error,
closed} is returned.

cast(ChannelRef, Msg) -> ok
Types:

ChannelRef = pid()

As returned by start_link/4

58 | Ericsson AB. All Rights Reserved.: SSH

href

ssh_client_channel

Msg = term()

Sends an asynchronous message to the channel process and returns ok immediately, ignoring if the destination node
or channel process does not exist. The channel calls Module:handle_cast/2 to handle the message.

enter_loop(State) -> _
Types:

State = term()

as returned by init/1

Makes an existing process an ssh_client_channel (replaces ssh_channel) process. Does not return, instead
the calling process enters the ssh_client_channel (replaces ssh_channel) process receive loop and become an
ssh_client_channel process. The process must have been started using one of the start functions in proc_lib,
see the proc_lib(3) manual page in STDLIB. The user is responsible for any initialization of the process and must
call init/1.

init(Options) -> {ok, State} | {ok, State, Timeout} | {stop, Reason}
Types:

Options = [{Option, Value}]

State = term()

Timeout = timeout()

Reason = term()

The following options must be present:

{channel_cb, atom()}

The module that implements the channel behaviour.

{init_args(), list()}

The list of arguments to the init function of the callback module.

{cm, ssh:connection_ref()}

Reference to the ssh connection as returned by ssh:connect/3.

{channel_id, ssh:channel_id()}

Id of the ssh channel as returned by ssh_connection:session_channel/2,4.

Note:

This function is normally not called by the user. The user only needs to call if the channel process needs to be
started with help of proc_lib instead of calling start/4 or start_link/4.

reply(Client, Reply) -> _
Types:

Client = opaque()

Reply = term()

This function can be used by a channel to send a reply to a client that called call/[2,3] when the reply cannot be
defined in the return value of Module:handle_call/3.

Client must be the From argument provided to the callback function handle_call/3. Reply is an arbitrary
term, which is given back to the client as the return value of call/[2,3].

Ericsson AB. All Rights Reserved.: SSH | 59

ssh_client_channel

start(SshConnection, ChannelId, ChannelCb, CbInitArgs) ->
start_link(SshConnection, ChannelId, ChannelCb, CbInitArgs) -> {ok,
ChannelRef} | {error, Reason}
Types:

SshConnection = ssh:connection_ref()

As returned by ssh:connect/3

ChannelId = ssh:channel_id()

As returned by ssh_connection:session_channel/[2,4].

ChannelCb = atom()

Name of the module implementing the service-specific parts of the channel.

CbInitArgs = [term()]

Argument list for the init function in the callback module.

ChannelRef = pid()

Starts a process that handles an SSH channel. It is called internally, by the ssh daemon, or explicitly by the ssh client
implementations. The behavior sets the trap_exit flag to true.

The following functions are to be exported from a ssh_client_channel callback module.

The timeout values that can be returned by the callback functions have the same semantics as in a gen_server. If the
time-out occurs, handle_msg/2 is called as handle_msg(timeout, State).

Exports

Module:code_change(OldVsn, State, Extra) -> {ok, NewState}
Types:

OldVsn = term()

In the case of an upgrade, OldVsn is Vsn, and in the case of a downgrade, OldVsn is {down,Vsn}. Vsn
is defined by the vsn attribute(s) of the old version of the callback module Module. If no such attribute is
defined, the version is the checksum of the BEAM file.

State = term()

Internal state of the channel.

Extra = term()

Passed "as-is" from the {advanced,Extra} part of the update instruction.

Converts process state when code is changed.

This function is called by a client-side channel when it is to update its internal state during a
release upgrade or downgrade, that is, when the instruction {update,Module,Change,...}, where
Change={advanced,Extra}, is given in the appup file. For more information, refer to Section 9.11.6 Release
Handling Instructions in the System Documentation.

Note:

Soft upgrade according to the OTP release concept is not straight forward for the server side, as subsystem channel
processes are spawned by the ssh application and hence added to its supervisor tree. The subsystem channels can
be upgraded when upgrading the user application, if the callback functions can handle two versions of the state,
but this function cannot be used in the normal way.

60 | Ericsson AB. All Rights Reserved.: SSH

ssh_client_channel

Module:init(Args) -> {ok, State} | {ok, State, timeout()} | {stop, Reason}
Types:

Args = term()

Last argument to start_link/4.

State = term()

Reason = term()

Makes necessary initializations and returns the initial channel state if the initializations succeed.

For more detailed information on time-outs, see Section Callback timeouts.

Module:handle_call(Msg, From, State) -> Result
Types:

Msg = term()

From = opaque()

Is to be used as argument to reply/2

State = term()

Result = {reply, Reply, NewState} | {reply, Reply, NewState, timeout()}
| {noreply, NewState} | {noreply , NewState, timeout()} | {stop, Reason,
Reply, NewState} | {stop, Reason, NewState}

Reply = term()

Will be the return value of call/[2,3]

NewState = term()

Reason = term()

Handles messages sent by calling call/[2,3]

For more detailed information on time-outs,, see Section Callback timeouts.

Module:handle_cast(Msg, State) -> Result
Types:

Msg = term()

State = term()

Result = {noreply, NewState} | {noreply, NewState, timeout()} | {stop,
Reason, NewState}

NewState = term()

Reason = term()

Handles messages sent by calling cast/2.

For more detailed information on time-outs, see Section Callback timeouts.

Module:handle_msg(Msg, State) -> {ok, State} | {stop, ChannelId, State}
Types:

Msg = timeout | term()

ChannelId = ssh:channel_id()

State = term()

Handles other messages than SSH Connection Protocol, call, or cast messages sent to the channel.

Possible Erlang 'EXIT' messages is to be handled by this function and all channels are to handle the following message.

Ericsson AB. All Rights Reserved.: SSH | 61

ssh_client_channel

{ssh_channel_up, ssh:channel_id(), ssh:connection_ref()}

This is the first message that the channel receives. It is sent just before the init/1 function returns successfully.
This is especially useful if the server wants to send a message to the client without first receiving a message from
it. If the message is not useful for your particular scenario, ignore it by immediately returning {ok, State}.

Module:handle_ssh_msg(Msg, State) -> {ok, State} | {stop, ChannelId, State}
Types:

Msg = ssh_connection:event()

ChannelId = ssh:channel_id()

State = term()

Handles SSH Connection Protocol messages that may need service-specific attention. For details, see
ssh_connection:event().

The following message is taken care of by the ssh_client_channel behavior.

{closed, ssh:channel_id()}

The channel behavior sends a close message to the other side, if such a message has not already been sent. Then
it terminates the channel with reason normal.

Module:terminate(Reason, State) -> _
Types:

Reason = term()

State = term()

This function is called by a channel process when it is about to terminate. Before this function is called,
ssh_connection:close/2 is called, if it has not been called earlier. This function does any necessary cleaning up. When
it returns, the channel process terminates with reason Reason. The return value is ignored.

62 | Ericsson AB. All Rights Reserved.: SSH

ssh_server_channel

ssh_server_channel
Erlang module

Note:

This module replaces ssh_daemon_channel.

The old module is still available for compatibility, but should not be used for new programs. The old module will
not be maintained except for some error corrections

SSH services (clients and servers) are implemented as channels that are multiplexed over an SSH connection and
communicates over the SSH Connection Protocol. This module provides a callback API that takes care of generic
channel aspects for daemons, such as flow control and close messages. It lets the callback functions take care of the
service (application) specific parts. This behavior also ensures that the channel process honors the principal of an OTP-
process so that it can be part of a supervisor tree. This is a requirement of channel processes implementing a subsystem
that will be added to the ssh applications supervisor tree.

Note:

When implementing a client subsystem handler, use -behaviour(ssh_client_channel) instead.

The following functions are to be exported from a ssh_server_channel callback module.

Exports

Module:init(Args) -> {ok, State} | {ok, State, timeout()} | {stop, Reason}
Types:

Args = term()

Last argument to start_link/4.

State = term()

Reason = term()

Makes necessary initializations and returns the initial channel state if the initializations succeed.

The time-out values that can be returned have the same semantics as in a gen_server. If the time-out occurs,
handle_msg/2 is called as handle_msg(timeout, State).

Module:handle_msg(Msg, State) -> {ok, State} | {stop, ChannelId, State}
Types:

Msg = timeout | term()

ChannelId = ssh:channel_id()

State = term()

Handles other messages than SSH Connection Protocol, call, or cast messages sent to the channel.

Possible Erlang 'EXIT' messages is to be handled by this function and all channels are to handle the following message.

Ericsson AB. All Rights Reserved.: SSH | 63

href

ssh_server_channel

{ssh_channel_up, ssh:channel_id(), ssh:connection_ref()}

This is the first message that the channel receives. This is especially useful if the server wants to send a message
to the client without first receiving a message from it. If the message is not useful for your particular scenario,
ignore it by immediately returning {ok, State}.

Module:handle_ssh_msg(Msg, State) -> {ok, State} | {stop, ChannelId, State}
Types:

Msg = ssh_connection:event()

ChannelId = ssh:channel_id()

State = term()

Handles SSH Connection Protocol messages that may need service-specific attention. For details, see
ssh_connection:event().

The following message is taken care of by the ssh_server_channel behavior.

{closed, ssh:channel_id()}

The channel behavior sends a close message to the other side, if such a message has not already been sent. Then
it terminates the channel with reason normal.

Module:terminate(Reason, State) -> _
Types:

Reason = term()

State = term()

This function is called by a channel process when it is about to terminate. Before this function is called,
ssh_connection:close/2 is called, if it has not been called earlier. This function does any necessary cleaning up. When
it returns, the channel process terminates with reason Reason. The return value is ignored.

64 | Ericsson AB. All Rights Reserved.: SSH

ssh_connection

ssh_connection
Erlang module

The SSH Connection Protocol is used by clients and servers, that is, SSH channels, to communicate over the SSH
connection. The API functions in this module send SSH Connection Protocol events, which are received as messages
by the remote channel handling the remote channel. The Erlang format of thoose messages is (see also below):

{ssh_cm, ssh:connection_ref(), channel_msg()}

If the ssh_client_channel behavior is used to implement the channel process, these messages are handled by
handle_ssh_msg/2.

Data Types
ssh_data_type_code() = integer() >= 0
The valid values are 0 ("normal") and 1 ("stderr"), see RFC 4254, Section 5.2.

result() = req_status() | {error, reason()}
reason() = closed | timeout
The result of a call.

If the request reached the peer, was handled and the response reached the requesting node the req_status() is the status
reported from the peer.

If not, the reason() indicates what went wrong:

closed
indicates that the channel or connection was closed when trying to send the request

timeout
indicates that the operation exceeded a time limit

req_status() = success | failure
The status of a request. Corresponds to the SSH_MSG_CHANNEL_SUCCESS and SSH_MSG_CHANNEL_FAILURE
values in RFC 4254, Section 5.4.

SSH Connection Protocol: General
event() = {ssh_cm, ssh:connection_ref(), channel_msg()}
channel_msg() =
 data_ch_msg() |
 eof_ch_msg() |
 closed_ch_msg() |
 pty_ch_msg() |
 env_ch_msg() |
 shell_ch_msg() |
 exec_ch_msg() |
 signal_ch_msg() |
 window_change_ch_msg() |
 exit_status_ch_msg() |
 exit_signal_ch_msg()
As mentioned in the introduction, the SSH Connection Protocol events are handled as messages. When writing a
channel handling process without using the support by the ssh_client_channel behavior the process must handle thoose
messages.

Ericsson AB. All Rights Reserved.: SSH | 65

href
href
href
href

ssh_connection

want_reply() = boolean()
Messages that include a WantReply expect the channel handling process to call ssh_connection:reply_request/4 with
the boolean value of WantReply as the second argument.

Data Transfer (RFC 4254, section 5.2)
data_ch_msg() =
 {data,
 ssh:channel_id(),
 ssh_data_type_code(),
 Data :: binary()}
Data has arrived on the channel. This event is sent as a result of calling ssh_connection:send/[3,4,5].

Closing a Channel (RFC 4254, section 5.3)
eof_ch_msg() = {eof, ssh:channel_id()}
Indicates that the other side sends no more data. This event is sent as a result of calling ssh_connection:send_eof/2.

closed_ch_msg() = {closed, ssh:channel_id()}
This event is sent as a result of calling ssh_connection:close/2. Both the handling of this event and sending it are taken
care of by the ssh_client_channel behavior.

Requesting a Pseudo-Terminal (RFC 4254, section 6.2)
pty_ch_msg() =
 {pty,
 ssh:channel_id(),
 want_reply(),
 {Terminal :: string(),
 CharWidth :: integer() >= 0,
 RowHeight :: integer() >= 0,
 PixelWidth :: integer() >= 0,
 PixelHeight :: integer() >= 0,
 TerminalModes :: [term_mode()]}}
term_mode() =
 {Opcode :: atom() | byte(), Value :: integer() >= 0}
A pseudo-terminal has been requested for the session. Terminal is the value of the TERM environment variable
value, that is, vt100. Zero dimension parameters must be ignored. The character/row dimensions override the
pixel dimensions (when non-zero). Pixel dimensions refer to the drawable area of the window. Opcode in the
TerminalModes list is the mnemonic name, represented as a lowercase Erlang atom, defined in RFC 4254, Section
8. It can also be an Opcode if the mnemonic name is not listed in the RFC. Example: OP code: 53, mnemonic
name ECHO erlang atom: echo. This event is sent as a result of calling ssh_connection:ptty_alloc/4.

Environment Variable Passing (RFC 4254, section 6.4)
env_ch_msg() =
 {env,
 ssh:channel_id(),
 want_reply(),
 Var :: string(),
 Value :: string()}
Environment variables can be passed to the shell/command to be started later. This event is sent as a result of calling
ssh_connection:setenv/5.

66 | Ericsson AB. All Rights Reserved.: SSH

href

ssh_connection

Starting a Shell or Command (RFC 4254, section 6.5)
shell_ch_msg() = {shell, ssh:channel_id(), want_reply()}
This message requests that the user default shell is started at the other end. This event is sent as a result of calling
ssh_connection:shell/2.

exec_ch_msg() =
 {exec, ssh:channel_id(), want_reply(), Command :: string()}
This message requests that the server starts execution of the given command. This event is sent as a result of calling
ssh_connection:exec/4 .

Window Dimension Change Message (RFC 4254, section 6.7)
window_change_ch_msg() =
 {window_change,
 ssh:channel_id(),
 CharWidth :: integer() >= 0,
 RowHeight :: integer() >= 0,
 PixelWidth :: integer() >= 0,
 PixelHeight :: integer() >= 0}
When the window (terminal) size changes on the client side, it can send a message to the server side to inform it of
the new dimensions. No API function generates this event.

Signals (RFC 4254, section 6.9)
signal_ch_msg() =
 {signal, ssh:channel_id(), SignalName :: string()}
A signal can be delivered to the remote process/service using the following message. Some systems do not support
signals, in which case they are to ignore this message. There is currently no function to generate this event as the
signals referred to are on OS-level and not something generated by an Erlang program.

Returning Exit Status (RFC 4254, section 6.10)
exit_status_ch_msg() =
 {exit_status,
 ssh:channel_id(),
 ExitStatus :: integer() >= 0}
When the command running at the other end terminates, the following message can be sent to return the exit status
of the command. A zero exit_status usually means that the command terminated successfully. This event is sent
as a result of calling ssh_connection:exit_status/3.

exit_signal_ch_msg() =
 {exit_signal,
 ssh:channel_id(),
 ExitSignal :: string(),
 ErrorMsg :: string(),
 LanguageString :: string()}
A remote execution can terminate violently because of a signal. Then this message can be received. For details on
valid string values, see RFC 4254 Section 6.10, which shows a special case of these signals.

Ericsson AB. All Rights Reserved.: SSH | 67

href

ssh_connection

Exports

adjust_window(ConnectionRef, ChannelId, NumOfBytes) -> ok
Types:

ConnectionRef = ssh:connection_ref()
ChannelId = ssh:channel_id()
NumOfBytes = integer()

Adjusts the SSH flow control window. This is to be done by both the client- and server-side channel processes.

Note:

Channels implemented with the ssh_client_channel behavior do not normally need to call this function as flow
control is handled by the behavior. The behavior adjusts the window every time the callback handle_ssh_msg/2
returns after processing channel data.

close(ConnectionRef, ChannelId) -> ok
Types:

ConnectionRef = ssh:connection_ref()
ChannelId = ssh:channel_id()

A server- or client-channel process can choose to close their session by sending a close event.

Note:

This function is called by the ssh_client_channel behavior when the channel is terminated, see
ssh_client_channel(3). Thus, channels implemented with the behavior are not to call this function explicitly.

exec(ConnectionRef, ChannelId, Command, Timeout) -> result()
Types:

ConnectionRef = ssh:connection_ref()
ChannelId = ssh:channel_id()
Command = string()
Timeout = timeout()

Is to be called by a client-channel process to request that the server starts executing the given command. The result is
several messages according to the following pattern. The last message is a channel close message, as the exec request
is a one-time execution that closes the channel when it is done.

N x data message(s)

The result of executing the command can be only one line or thousands of lines depending on the command.

0 or 1 x eof message

Indicates that no more data is to be sent.

0 or 1 x exit signal message

Not all systems send signals. For details on valid string values, see RFC 4254, Section 6.10

0 or 1 x exit status message

It is recommended by the SSH Connection Protocol to send this message, but that is not always the case.

68 | Ericsson AB. All Rights Reserved.: SSH

ssh_connection

1 x closed status message

Indicates that the ssh_client_channel started for the execution of the command has now been shut down.

See the User's Guide section on One-Time Execution for examples.

exit_status(ConnectionRef, ChannelId, Status) -> ok
Types:

ConnectionRef = ssh:connection_ref()
ChannelId = ssh:channel_id()
Status = integer()

Is to be called by a server-channel process to send the exit status of a command to the client.

ptty_alloc(ConnectionRef, ChannelId, Options) -> result()
ptty_alloc(ConnectionRef, ChannelId, Options, Timeout) -> result()
Types:

ConnectionRef = ssh:connection_ref()
ChannelId = ssh:channel_id()
Options = proplists:proplist()
Timeout = timeout()

Sends an SSH Connection Protocol pty_req, to allocate a pseudo-terminal. Is to be called by an SSH client process.

Options:

{term, string()}

Defaults to os:getenv("TERM") or vt100 if it is undefined.

{width, integer()}

Defaults to 80 if pixel_width is not defined.

{height, integer()}

Defaults to 24 if pixel_height is not defined.

{pixel_width, integer()}

Is disregarded if width is defined.

{pixel_height, integer()}

Is disregarded if height is defined.

{pty_opts, [{posix_atom(), integer()}]}

Option can be an empty list. Otherwise, see possible POSIX names in Section 8 in RFC 4254.

reply_request(ConnectionRef, WantReply, Status, ChannelId) -> ok
Types:

Ericsson AB. All Rights Reserved.: SSH | 69

href

ssh_connection

ConnectionRef = ssh:connection_ref()
WantReply = boolean()
Status = req_status()
ChannelId = ssh:channel_id()

Sends status replies to requests where the requester has stated that it wants a status report, that is, WantReply =
true. If WantReply is false, calling this function becomes a "noop". Is to be called while handling an SSH
Connection Protocol message containing a WantReply boolean value.

send(ConnectionRef, ChannelId, Data) ->
send(ConnectionRef, ChannelId, Data, Timeout) ->
send(ConnectionRef, ChannelId, Type, Data) ->
send(ConnectionRef, ChannelId, Type, Data, TimeOut) -> ok | Error
Types:

ConnectionRef = ssh:connection_ref()

ChannelId = ssh:channel_id()

Data = iodata()

Type = ssh_data_type_code()

Timeout = timeout()

Error = {error, reason()}

Is to be called by client- and server-channel processes to send data to each other.

The function subsystem/4 and subsequent calls of send/3,4,5 must be executed in the same process.

send_eof(ConnectionRef, ChannelId) -> ok | {error, closed}
Types:

ConnectionRef = ssh:connection_ref()
ChannelId = ssh:channel_id()

Sends EOF on channel ChannelId.

session_channel(ConnectionRef, Timeout) -> Result
session_channel(ConnectionRef, InitialWindowSize, MaxPacketSize,
 Timeout) ->
 Result
Types:

ConnectionRef = ssh:connection_ref()
InitialWindowSize = MaxPacketSize = integer() >= 1 | undefined
Timeout = timeout()
Result = {ok, ssh:channel_id()} | {error, reason()}

Opens a channel for an SSH session. The channel id returned from this function is the id used as input to the other
functions in this module.

setenv(ConnectionRef, ChannelId, Var, Value, Timeout) -> success
Types:

70 | Ericsson AB. All Rights Reserved.: SSH

ssh_connection

ConnectionRef = ssh:connection_ref()
ChannelId = ssh:channel_id()
Var = Value = string()
Timeout = timeout()

Environment variables can be passed before starting the shell/command. Is to be called by a client channel processes.

shell(ConnectionRef, ChannelId) -> Result
Types:

ConnectionRef = ssh:connection_ref()
ChannelId = ssh:channel_id()
Result = ok | success | failure | {error, timeout}

Is to be called by a client channel process to request that the user default shell (typically defined in /etc/passwd in
Unix systems) is executed at the server end.

Note: the return value is ok instead of success unlike in other functions in this module. This is a fault that was
introduced so long ago that any change would break a large number of existing software.

subsystem(ConnectionRef, ChannelId, Subsystem, Timeout) ->
 result()
Types:

ConnectionRef = ssh:connection_ref()
ChannelId = ssh:channel_id()
Subsystem = string()
Timeout = timeout()

Is to be called by a client-channel process for requesting to execute a predefined subsystem on the server.

The function subsystem/4 and subsequent calls of send/3,4,5 must be executed in the same process.

Ericsson AB. All Rights Reserved.: SSH | 71

ssh_client_key_api

ssh_client_key_api
Erlang module

Behavior describing the API for public key handling of an SSH client. By implementing the callbacks defined in this
behavior, the public key handling of an SSH client can be customized. By default the ssh application implements this
behavior with help of the standard OpenSSH files, see the ssh(6) application manual.

Data Types
client_key_cb_options(T) =
 [{key_cb_private, [T]} | ssh:client_option()]
Options provided to ssh:connect/[3,4].

The option list given in the key_cb option is available with the key key_cb_private.

Exports

Module:add_host_key(HostNames, PublicHostKey, ConnectOptions) -> ok | {error,
Reason}
Types:

HostNames = string()

Description of the host that owns the PublicHostKey.

PublicHostKey = public_key:public_key()

Of ECDSA keys, only the Normally an RSA, DSA or ECDSA public key, but handling of other public keys can
be added.

ConnectOptions = client_key_cb_options()

This function is retired in favour for Module:add_host_key/4 which is the preferred API function. The calling
SSH application will still try the add_host_key/3 if the call to add_host_key/4 failed.

Adds a host key to the set of trusted host keys.

Module:add_host_key(Host, Port, PublicHostKey, ConnectOptions) -> ok |
{error, Reason}
Types:

Host = inet:ip_address() | inet:hostname() | [inet:ip_address() |
inet:hostname()]

The host that owns the PublicHostKey. One or more IP addresses or hostnames.

Port = inet:port_number()

The Port number of the Host.

PublicHostKey = public_key:public_key()

Of ECDSA keys, only the Normally an RSA, DSA or ECDSA public key, but handling of other public keys can
be added.

ConnectOptions = client_key_cb_options()

Adds a host key to the set of trusted host keys.

This function is preferred to the old Module:add_host_key/3 since it also uses the peer host port number and
may return an error message.

72 | Ericsson AB. All Rights Reserved.: SSH

ssh_client_key_api

The OTP/SSH application first calls this function in the callback module, and then the old
Module:add_host_key/3 for compatibility.

Module:is_host_key(Key, Host, Algorithm, ConnectOptions) -> Result
Types:

Key = public_key:public_key()

Normally an RSA, DSA or ECDSA public key, but handling of other public keys can be added.

Host = string()

Description of the host.

Algorithm = ssh:pubkey_alg()

Host key algorithm.

ConnectOptions = client_key_cb_options()

Result = boolean()

This function is retired in favour for Module:is_host_key/5 which is the preferred API function. The calling
SSH application will still try the is_host_key/4 if the call to is_host_key/5 failed.

Checks if a host key is trusted.

Module:is_host_key(Key, Host, Port, Algorithm, ConnectOptions) -> Result
Types:

Key = public_key:public_key()

Normally an RSA, DSA or ECDSA public key, but handling of other public keys can be added.

Host = inet:ip_address() | inet:hostname() | [inet:ip_address() |
inet:hostname()]

Description of the host with one or more IP addresses or hostnames.

Port = inet:port_number()

The Port number of the host.

Algorithm = ssh:pubkey_alg()

Host key algorithm.

ConnectOptions = client_key_cb_options()

Result = boolean() | {error, Error::term()}

The exact error message depends on the actual callback module. The Error message makes the connection to
fail, and is returned from e.g ssh:connect/3.

Checks if a host key is trusted.

This function is preferred to the old Module:is_host_key/4 since it also uses the peer host port number and
may return an error message.

The OTP/SSH application first calls this function in the callback module, and then the old
Module:is_host_key/4 for compatibility.

Module:user_key(Algorithm, ConnectOptions) -> Result
Types:

Algorithm = ssh:pubkey_alg()

Host key algorithm.

ConnectOptions = client_key_cb_options()

Ericsson AB. All Rights Reserved.: SSH | 73

ssh_client_key_api

Result = {ok, public_key:private_key()} | {ok, {ssh2_pubkey, PubKeyBlob ::
binary()}} | {error, term()}

Fetches the users public key matching the Algorithm. Some key callback modules may return {ssh2_pubkey,
PubKeyBlob :: binary()}.

Note:

The private key contains the public key.

74 | Ericsson AB. All Rights Reserved.: SSH

ssh_server_key_api

ssh_server_key_api
Erlang module

Behaviour describing the API for public key handling of an SSH server. By implementing the callbacks defined in this
behavior, the public key handling of an SSH server can be customized. By default the SSH application implements
this behavior with help of the standard OpenSSH files, see the ssh(6) application manual.

Data Types
daemon_key_cb_options(T) =
 [{key_cb_private, [T]} | ssh:daemon_option()]
Options provided to ssh:daemon/2,3.

The option list given in the key_cb option is available with the key key_cb_private.

Exports

Module:host_key(Algorithm, DaemonOptions) -> {ok, PrivateKey} | {error,
Reason}
Types:

Algorithm = ssh:pubkey_alg()

Host key algorithm.

DaemonOptions = daemon_key_cb_options()

PrivateKey = public_key:private_key() | crypto:engine_key_ref()

Private key of the host matching the Algorithm. It may be a reference to a 'ssh-rsa', rsa-sha2-* or 'ssh-
dss' (NOT ecdsa) key stored in a loaded Engine.

Reason = term()

Fetches the private key of the host.

Module:is_auth_key(PublicUserKey, User, DaemonOptions) -> Result
Types:

PublicUserKey = public_key:public_key()

Normally an RSA, DSA or ECDSA public key, but handling of other public keys can be added

User = string()

User owning the public key.

DaemonOptions = daemon_key_cb_options()

Result = boolean()

Checks if the user key is authorized.

Ericsson AB. All Rights Reserved.: SSH | 75

ssh_file

ssh_file
Erlang module

This module is the default callback handler for the client's and the server's user and host "database" operations. All
data, for instance key pairs, are stored in files in the normal file system. This page documents the files, where they are
stored and configuration options for this callback module.

The intention is to be compatible with the OpenSSH storage in files. Therefore it mimics directories and filenames
of OpenSSH.

Ssh_file implements the ssh_server_key_api and the ssh_client_key_api. This enables the user to make an own
interface using for example a database handler.

Such another callback module could be used by setting the option key_cb when starting a client or a server (with
for example ssh:connect, ssh:daemon of ssh:shell).

Note:

The functions are Callbacks for the SSH app. They are not intended to be called from the user's code!

Files, directories and who uses them
Daemons
Daemons uses all files stored in the SYSDIR directory.

Optionally, in case of publickey authorization, one or more of the remote user's public keys in the USERDIR
directory are used. See the files USERDIR/authorized_keys and USERDIR/authorized_keys2.

Clients
Clients uses all files stored in the USERDIR directory.

Directory contents
LOCALUSER

The user name of the OS process running the Erlang virtual machine (emulator).

SYSDIR

This is the directory holding the server's files:

• ssh_host_dsa_key - private dss host key (optional)

• ssh_host_rsa_key - private rsa host key (optional)

• ssh_host_ecdsa_key - private ecdsa host key (optional)

• ssh_host_ed25519_key - private eddsa host key for curve 25519 (optional)

• ssh_host_ed448_key - private eddsa host key for curve 448 (optional)

The key files could be generated with OpenSSH's ssh-keygen command.

At least one host key must be defined. The default value of SYSDIR is /etc/ssh.

For security reasons, this directory is normally accessible only to the root user.

To change the SYSDIR, see the system_dir option.

76 | Ericsson AB. All Rights Reserved.: SSH

href
href

ssh_file

USERDIR

This is the directory holding the files:

• authorized_keys and, as second alternative authorized_keys2 - the user's public keys are stored
concatenated in one of those files.

It is composed of lines as for OpenSSH:

(options)? keytype base64-encoded-key comment

where

options :: option(,option)*
option :: % All options are skipped
keytype :: 'ssh-dsa'
 | 'ssh-rsa'
 | 'ssh-ecdsa-nistp256'
 | 'ssh-ecdsa-nistp384'
 | 'ssh-ecdsa-nistp521'
 | 'ssh-ed25519'
 | 'ssh-ed448'
base64-encoded-key :: % The user's public key
comment :: % Comments are skipped

• known_hosts - host keys from hosts visited concatenated. The file is created and used by the client.

It is composed of lines as for OpenSSH:

(option)? pattern(,pattern)* keytype key (comment)?

where

option :: '@revoked'
pattern :: host | '[' host ']:' port
host :: ip-address | hostname | '*'
port :: portnumber | '*'
keytype :: 'ssh-dsa'
 | 'ssh-rsa'
 | 'ssh-ecdsa-nistp256'
 | 'ssh-ecdsa-nistp384'
 | 'ssh-ecdsa-nistp521'
 | 'ssh-ed25519'
 | 'ssh-ed448'
key :: % encoded key from eg ssh_host_*.pub

• id_dsa - private dss user key (optional)

• id_rsa - private rsa user key (optional)

• id_ecdsa - private ecdsa user key (optional)

• id_ed25519 - private eddsa user key for curve 25519 (optional)

• id_ed448 - private eddsa user key for curve 448 (optional)

The key files could be generated with OpenSSH's ssh-keygen command.

The default value of USERDIR is /home/LOCALUSER/.ssh.

To change the USERDIR, see the user_dir option

Ericsson AB. All Rights Reserved.: SSH | 77

href
href

ssh_file

Data Types
Options for the default ssh_file callback module
user_dir_common_option() = {user_dir, string()}
Sets the user directory.

user_dir_fun_common_option() = {user_dir_fun, user2dir()}
user2dir() =
 fun((RemoteUserName :: string()) -> UserDir :: string())
Sets the user directory dynamically by evaluating the user2dir function.

system_dir_daemon_option() = {system_dir, string()}
Sets the system directory.

pubkey_passphrase_client_options() =
 {dsa_pass_phrase, string()} |
 {rsa_pass_phrase, string()} |
 {ecdsa_pass_phrase, string()}
If the user's DSA, RSA or ECDSA key is protected by a passphrase, it can be supplied with thoose options.

Note that EdDSA passhrases (Curves 25519 and 448) are not implemented.

optimize_key_lookup() = {optimize, time | space}
Make the handling of large files fast by setting time, but this will use more memory. The space variant shrinks the
memory requirements, but with a higher time consumption.

To set it, set the option {key_cb, {ssh_file, [{optimize,TimeOrSpace}]} in the call of "ssh:connect/3,
ssh:daemon/2 or similar function call that initiates an ssh connection.

key() = public_key:public_key() | public_key:private_key()
The key representation

experimental_openssh_key_v1() =
 [{key(), openssh_key_v1_attributes()}]
openssh_key_v1_attributes() = [{atom(), term()}]
Types for the experimental implementaition of the openssh_key_v1 format.

Exports

host_key(Algorithm, Options) -> Result
Types:

Algorithm = ssh:pubkey_alg()
Result = {ok, public_key:private_key()} | {error, term()}
Options = ssh_server_key_api:daemon_key_cb_options(none())

Types and description

See the api description in ssh_server_key_api, Module:host_key/2.

Options

• system_dir

Files

78 | Ericsson AB. All Rights Reserved.: SSH

ssh_file

• SYSDIR/ssh_host_rsa_key

• SYSDIR/ssh_host_dsa_key

• SYSDIR/ssh_host_ecdsa_key

• SYSDIR/ssh_host_ed25519_key

• SYSDIR/ssh_host_ed448_keyc>

is_auth_key(Key, User, Options) -> boolean()
Types:

Key = public_key:public_key()
User = string()
Options =
 ssh_server_key_api:daemon_key_cb_options(optimize_key_lookup())

Types and description

See the api description in ssh_server_key_api: Module:is_auth_key/3.

Options

• user_dir_fun

• user_dir

Files

• USERDIR/authorized_keys

• USERDIR/authorized_keys2

This functions discards all options in the beginning of the lines of thoose files when reading them.

add_host_key(Host, Port, Key, Options) -> Result
Types:

Host =
 inet:ip_address() |
 inet:hostname() |
 [inet:ip_address() | inet:hostname()]
Port = inet:port_number()
Key = public_key:public_key()
Options = ssh_client_key_api:client_key_cb_options(none())
Result = ok | {error, term()}

Types and description

See the api description in ssh_client_key_api, Module:add_host_key/4.

Note that the alternative, the old Module:add_host_key/3 is no longer supported by ssh_file.

Option

• user_dir

File

• USERDIR/known_hosts

is_host_key(Key, Host, Port, Algorithm, Options) -> Result
Types:

Ericsson AB. All Rights Reserved.: SSH | 79

ssh_file

Key = public_key:public_key()
Host =
 inet:ip_address() |
 inet:hostname() |
 [inet:ip_address() | inet:hostname()]
Port = inet:port_number()
Algorithm = ssh:pubkey_alg()
Options =
 ssh_client_key_api:client_key_cb_options(optimize_key_lookup())
Result = boolean() | {error, term()}

Types and description

See the api description in ssh_client_key_api, Module:is_host_key/5.

Note that the alternative, the old Module:is_host_key/4 is no longer supported by ssh_file.

Option

• user_dir

File

• USERDIR/known_hosts

user_key(Algorithm, Options) -> Result
Types:

Algorithm = ssh:pubkey_alg()
Result = {ok, public_key:private_key()} | {error, string()}
Options = ssh_client_key_api:client_key_cb_options(none())

Types and description

See the api description in ssh_client_key_api, Module:user_key/2.

Options

• user_dir

• dsa_pass_phrase

• rsa_pass_phrase

• ecdsa_pass_phrase

Note that EdDSA passhrases (Curves 25519 and 448) are not implemented.

Files

• USERDIR/id_dsa

• USERDIR/id_rsa

• USERDIR/id_ecdsa

• USERDIR/id_ed25519

• USERDIR/id_ed448

decode(SshBin, Type) -> Decoded | {error, term()}
Types:

80 | Ericsson AB. All Rights Reserved.: SSH

ssh_file

SshBin = binary()
Type =
 ssh2_pubkey | public_key | openssh_key | rfc4716_key |
 openssh_key_v1 | known_hosts | auth_keys
Decoded =
 Decoded_ssh2_pubkey | Decoded_public | Decoded_openssh |
 Decoded_rfc4716 | Decoded_openssh_key_v1 |
 Decoded_known_hosts | Decoded_auth_keys
Decoded_ssh2_pubkey = public_key:public_key()
Decoded_public =
 Decoded_rfc4716 | Decoded_openssh_key_v1 | Decoded_openssh
Decoded_openssh =
 [{public_key:public_key(), [{comment, string()}]}]
Decoded_rfc4716 = [{key(), [{headers, Attrs}]}]
Decoded_openssh_key_v1 = experimental_openssh_key_v1()
Decoded_known_hosts =
 [{public_key:public_key(),
 [{comment, string()} | {hostnames, [string()]}]}]
Decoded_auth_keys =
 [{public_key:public_key(),
 [{comment, string()} | {options, [string()]}]}]
Attrs = {Key :: string(), Value :: string()}

Decodes an SSH file-binary.

If Type is public_key the binary can be either an RFC4716 public key or an OpenSSH public key.

Note:

The following key types have been renamed from the deprecated public_key:ssh_decode/2:

• rfc4716_public_key -> rfc4716_key

• openssh_public_key -> openssh_key

Note:

The implementation of the openssh_key_v1 format is still experimental.

encode(InData, Type) -> binary() | {error, term()}
Types:

Ericsson AB. All Rights Reserved.: SSH | 81

ssh_file

Type =
 ssh2_pubkey | openssh_key | rfc4716_key | openssh_key_v1 |
 known_hosts | auth_keys
InData =
 InData_ssh2_pubkey | InData_openssh | InData_rfc4716 |
 InData_openssh_key_v1 | InData_known_hosts | InData_auth_keys
InData_ssh2_pubkey = public_key:public_key()
InData_openssh =
 [{public_key:public_key(), [{comment, string()}]}]
InData_rfc4716 = [{key(), [{headers, Attrs}]}]
InData_openssh_key_v1 = experimental_openssh_key_v1()
InData_known_hosts =
 [{public_key:public_key(),
 [{comment, string()} | {hostnames, [string()]}]}]
InData_auth_keys =
 [{public_key:public_key(),
 [{comment, string()} | {options, [string()]}]}]
Attrs = {Key :: string(), Value :: string()}

Encodes a list of SSH file entries (public keys and attributes) to a binary.

Note:

The following key types have been renamed from the removed public_key:ssh_encode/2:

• rfc4716_public_key -> rfc4716_key

• openssh_public_key -> openssh_key

Note:

The implementation of the openssh_key_v1 format is still experimental.

extract_public_key(PrivKey) -> PubKey
Types:

PrivKey = public_key:private_key()
PubKey = public_key:public_key()

Fetches the public key from a private key.

82 | Ericsson AB. All Rights Reserved.: SSH

ssh_agent

ssh_agent
Erlang module

This module defines a callback handler for the communication with an SSH Agent and can be used to replace
the default callback. This allows to issue signing requests to an agent that stores SSH private keys to perform
authentication.

Ssh_agent implements the ssh_client_key_api, to allow it to be used by setting the option key_cb when starting a
client (with for example ssh:connect, ssh:shell).

 {key_cb, {ssh_agent, []}}

The agent communication is established through a UNIX domain socket. By default, the socket path will be fetched
from the SSH_AUTH_SOCK environment variable, which is the default socket path in the agent implementation of
OpenSSH.

In order to set a different socket path the socket_path option can be set.

 {key_cb, {ssh_agent, [{socket_path, SocketPath}]}}

Note:

The functions are Callbacks for the SSH app. They are not intended to be called from the user's code!

Data Types
Options for the ssh_agent callback module
socket_path_option() = {socket_path, string()}
Sets the socket path for the communication with the agent.

timeout_option() = {timeout, integer()}
Sets the time-out in milliseconds when communicating with the agent via the socket. The default value is 1000.

call_ssh_file_option() = {call_ssh_file, atom()}
The module which the add_host_key and is_host_key callbacks are delegated to. Defaults to the ssh_file
module.

Exports

add_host_key(Host :: string(),
 PublicKey :: public_key:public_key(),
 Options) ->
 ok | {error, Error :: term()}
add_host_key(Host,
 Port :: inet:port_number(),
 PublicKey :: public_key:public_key(),
 Options) ->
 Result
Types:

Ericsson AB. All Rights Reserved.: SSH | 83

href
href

ssh_agent

Host =
 inet:ip_address() |
 inet:hostname() |
 [inet:ip_address() | inet:hostname()]
Options =
 ssh_client_key_api:client_key_cb_options(call_ssh_file_option())
Result = ok | {error, Error :: term()}

This callback is delegated to the ssh_file module.

is_host_key(Key :: public_key:public_key(),
 Host :: string(),
 Algorithm :: ssh:pubkey_alg(),
 Options) ->
 boolean()
is_host_key(Key :: public_key:public_key(),
 Host,
 Port :: inet:port_number(),
 Algorithm :: ssh:pubkey_alg(),
 Options) ->
 boolean()
Types:

Host =
 inet:ip_address() |
 inet:hostname() |
 [inet:ip_address() | inet:hostname()]
Options =
 ssh_client_key_api:client_key_cb_options(call_ssh_file_option())

This callback is delegated to the ssh_file module.

user_key(Algorithm :: ssh:pubkey_alg(), Options) -> Result
Types:

Result =
 {ok, public_key:private_key()} |
 {ok, {ssh2_pubkey, PubKeyBlob :: binary()}} |
 {error, string()}
Options =
 ssh_client_key_api:client_key_cb_options(socket_path_option() |
 timeout_option())

Types and description

See the api description in ssh_client_key_api, Module:user_key/2.

84 | Ericsson AB. All Rights Reserved.: SSH

ssh_sftp

ssh_sftp
Erlang module

This module implements an SSH FTP (SFTP) client. SFTP is a secure, encrypted file transfer service available for SSH.

Data Types
sftp_option() =
 {timeout, timeout()} |
 {sftp_vsn, integer() >= 1} |
 {window_size, integer() >= 1} |
 {packet_size, integer() >= 1}

Error cause
reason() = atom() | string() | tuple()
A description of the reason why an operation failed.

The atom() value is formed from the sftp error codes in the protocol-level responses as defined in draft-ietf-secsh-
filexfer-13 section 9.1. The codes are named as SSH_FX_* which are transformed into lowercase of the star-part.
E.g. the error code SSH_FX_NO_SUCH_FILE will cause the reason() to be no_such_file.

The string() reason is the error information from the server in case of an exit-signal. If that information is empty,
the reason is the exit signal name.

The tuple() reason are other errors like for example {exit_status,1}.

Crypto operations for open_tar
tar_crypto_spec() = encrypt_spec() | decrypt_spec()
encrypt_spec() = {init_fun(), crypto_fun(), final_fun()}
decrypt_spec() = {init_fun(), crypto_fun()}
Specifies the encryption or decryption applied to tar files when using open_tar/3 or open_tar/4.

The encryption or decryption is applied to the generated stream of bytes prior to sending the resulting stream to the
SFTP server.

For code examples see Section Example with encryption in the ssh Users Guide.

init_fun() =
 fun(() -> {ok, crypto_state()}) |
 fun(() -> {ok, crypto_state(), chunk_size()})
chunk_size() = undefined | integer() >= 1
crypto_state() = any()
The init_fun() in the tar_crypto_spec is applied once prior to any other crypto operation. The intention is
that this function initiates the encryption or decryption for example by calling crypto:crypto_init/4 or similar. The
crypto_state() is the state such a function may return.

If the selected cipher needs to have the input data partitioned into blocks of a certain size, the init_fun() should
return the second form of return value with the chunk_size() set to the block size. If the chunk_size()
is undefined, the size of the PlainBins varies, because this is intended for stream crypto, whereas a fixed
chunk_size() is intended for block crypto. A chunk_size() can be changed in the return from the
crypto_fun(). The value can be changed between pos_integer() and undefined.

crypto_fun() =

Ericsson AB. All Rights Reserved.: SSH | 85

href
href

ssh_sftp

 fun((TextIn :: binary(), crypto_state()) -> crypto_result())
crypto_result() =
 {ok, TextOut :: binary(), crypto_state()} |
 {ok, TextOut :: binary(), crypto_state(), chunk_size()}
The initial crypto_state() returned from the init_fun() is folded into repeated applications of the
crypto_fun() in the tar_crypto_spec. The binary returned from that fun is sent to the remote SFTP server and the
new crypto_state() is used in the next call of the crypto_fun().

If the crypto_fun() reurns a chunk_size(), that value is as block size for further blocks in calls to
crypto_fun().

final_fun() =
 fun((FinalTextIn :: binary(), crypto_state()) ->
 {ok, FinalTextOut :: binary()})
If doing encryption, the final_fun() in the tar_crypto_spec is applied to the last piece of data. The final_fun()
is responsible for padding (if needed) and encryption of that last piece.

Exports

apread(ChannelPid, Handle, Position, Len) -> {async, N} | Error
Types:

ChannelPid = pid()
Handle = term()
Position = Len = integer()
Error = {error, reason()}
N = term()

The apread/4 function reads from a specified position, combining the position/3 and aread/3 functions.

apwrite(ChannelPid, Handle, Position, Data) -> {async, N} | Error
Types:

ChannelPid = pid()
Handle = term()
Position = integer()
Data = binary()
Error = {error, reason()}
N = term()

The apwrite/4 function writes to a specified position, combining the position/3 and awrite/3 functions.

aread(ChannelPid, Handle, Len) -> {async, N} | Error
Types:

86 | Ericsson AB. All Rights Reserved.: SSH

ssh_sftp

ChannelPid = pid()
Handle = term()
Len = integer()
Error = {error, reason()}
N = term()

Reads from an open file, without waiting for the result. If the handle is valid, the function returns {async, N},
where N is a term guaranteed to be unique between calls of aread. The actual data is sent as a message to the calling
process. This message has the form {async_reply, N, Result}, where Result is the result from the read,
either {ok, Data}, eof, or {error, reason()}.

awrite(ChannelPid, Handle, Data) -> {async, N} | Error
Types:

ChannelPid = pid()
Handle = term()
Data = binary()
Error = {error, reason()}
N = term()

Writes to an open file, without waiting for the result. If the handle is valid, the function returns {async, N}, where
N is a term guaranteed to be unique between calls of awrite. The result of the write operation is sent as a message
to the calling process. This message has the form {async_reply, N, Result}, where Result is the result
from the write, either ok, or {error, reason()}.

close(ChannelPid, Handle) -> ok | Error
close(ChannelPid, Handle, Timeout) -> ok | Error
Types:

ChannelPid = pid()
Handle = term()
Timeout = timeout()
Error = {error, reason()}

Closes a handle to an open file or directory on the server.

delete(ChannelPid, Name) -> ok | Error
delete(ChannelPid, Name, Timeout) -> ok | Error
Types:

ChannelPid = pid()
Name = string()
Timeout = timeout()
Error = {error, reason()}

Deletes the file specified by Name.

del_dir(ChannelPid, Name) -> ok | Error
del_dir(ChannelPid, Name, Timeout) -> ok | Error
Types:

Ericsson AB. All Rights Reserved.: SSH | 87

ssh_sftp

ChannelPid = pid()
Name = string()
Timeout = timeout()
Error = {error, reason()}

Deletes a directory specified by Name. The directory must be empty before it can be successfully deleted.

list_dir(ChannelPid, Path) -> {ok, FileNames} | Error
list_dir(ChannelPid, Path, Timeout) -> {ok, FileNames} | Error
Types:

ChannelPid = pid()
Path = string()
Timeout = timeout()
FileNames = [FileName]
FileName = string()
Error = {error, reason()}

Lists the given directory on the server, returning the filenames as a list of strings.

make_dir(ChannelPid, Name) -> ok | Error
make_dir(ChannelPid, Name, Timeout) -> ok | Error
Types:

ChannelPid = pid()
Name = string()
Timeout = timeout()
Error = {error, reason()}

Creates a directory specified by Name. Name must be a full path to a new directory. The directory can only be created
in an existing directory.

make_symlink(ChannelPid, Name, Target) -> ok | Error
make_symlink(ChannelPid, Name, Target, Timeout) -> ok | Error
Types:

ChannelPid = pid()
Name = Target = string()
Timeout = timeout()
Error = {error, reason()}

Creates a symbolic link pointing to Target with the name Name.

open(ChannelPid, Name, Mode) -> {ok, Handle} | Error
open(ChannelPid, Name, Mode, Timeout) -> {ok, Handle} | Error
Types:

88 | Ericsson AB. All Rights Reserved.: SSH

ssh_sftp

ChannelPid = pid()
Name = string()
Mode = [read | write | append | binary | raw]
Timeout = timeout()
Handle = term()
Error = {error, reason()}

Opens a file on the server and returns a handle, which can be used for reading or writing.

opendir(ChannelPid, Path) -> {ok, Handle} | Error
opendir(ChannelPid, Path, Timeout) -> {ok, Handle} | Error
Types:

ChannelPid = pid()
Path = string()
Timeout = timeout()
Handle = term()
Error = {error, reason()}

Opens a handle to a directory on the server. The handle can be used for reading directory contents.

open_tar(ChannelPid, Path, Mode) -> {ok, Handle} | Error
open_tar(ChannelPid, Path, Mode, Timeout) -> {ok, Handle} | Error
Types:

ChannelPid = pid()
Path = string()
Mode = [read | write | {crypto, tar_crypto_spec()}]
Timeout = timeout()
Handle = term()
Error = {error, reason()}

Opens a handle to a tar file on the server, associated with ChannelPid. The handle can be used for remote tar creation
and extraction. The actual writing and reading is performed by calls to erl_tar:add/3,4 and erl_tar:extract/2. Note: The
erl_tar:init/3 function should not be called, that one is called by this open_tar function.

For code examples see Section SFTP Client with TAR Compression in the ssh Users Guide.

The crypto mode option is explained in the data types section above, see Crypto operations for open_tar. Encryption
is assumed if the Mode contains write, and decryption if the Mode contains read.

position(ChannelPid, Handle, Location) ->
 {ok, NewPosition} | Error
position(ChannelPid, Handle, Location, Timeout) ->
 {ok, NewPosition} | Error
Types:

Ericsson AB. All Rights Reserved.: SSH | 89

ssh_sftp

ChannelPid = pid()
Handle = term()
Location =
 Offset |
 {bof, Offset} |
 {cur, Offset} |
 {eof, Offset} |
 bof | cur | eof
Timeout = timeout()
Offset = NewPosition = integer()
Error = {error, reason()}

Sets the file position of the file referenced by Handle. Returns {ok, NewPosition} (as an absolute offset) if
successful, otherwise {error, reason()}. Location is one of the following:

Offset

The same as {bof, Offset}.

{bof, Offset}

Absolute offset.

{cur, Offset}

Offset from the current position.

{eof, Offset}

Offset from the end of file.

bof | cur | eof

The same as eariler with Offset 0, that is, {bof, 0} | {cur, 0} | {eof, 0}.

pread(ChannelPid, Handle, Position, Len) ->
 {ok, Data} | eof | Error
pread(ChannelPid, Handle, Position, Len, Timeout) ->
 {ok, Data} | eof | Error
Types:

ChannelPid = pid()
Handle = term()
Position = Len = integer()
Timeout = timeout()
Data = string() | binary()
Error = {error, reason()}

The pread/3,4 function reads from a specified position, combining the position/3 and read/3,4 functions.

pwrite(ChannelPid, Handle, Position, Data) -> ok | Error
pwrite(ChannelPid, Handle, Position, Data, Timeout) -> ok | Error
Types:

90 | Ericsson AB. All Rights Reserved.: SSH

ssh_sftp

ChannelPid = pid()
Handle = term()
Position = integer()
Data = iolist()
Timeout = timeout()
Error = {error, reason()}

The pwrite/3,4 function writes to a specified position, combining the position/3 and write/3,4 functions.

read(ChannelPid, Handle, Len) -> {ok, Data} | eof | Error
read(ChannelPid, Handle, Len, Timeout) -> {ok, Data} | eof | Error
Types:

ChannelPid = pid()
Handle = term()
Len = integer()
Timeout = timeout()
Data = string() | binary()
Error = {error, reason()}

Reads Len bytes from the file referenced by Handle. Returns {ok, Data}, eof, or {error, reason()}. If
the file is opened with binary, Data is a binary, otherwise it is a string.

If the file is read past eof, only the remaining bytes are read and returned. If no bytes are read, eof is returned.

read_file(ChannelPid, File) -> {ok, Data} | Error
read_file(ChannelPid, File, Timeout) -> {ok, Data} | Error
Types:

ChannelPid = pid()
File = string()
Data = binary()
Timeout = timeout()
Error = {error, reason()}

Reads a file from the server, and returns the data in a binary.

read_file_info(ChannelPid, Name) -> {ok, FileInfo} | Error
read_file_info(ChannelPid, Name, Timeout) ->
 {ok, FileInfo} | Error
Types:

ChannelPid = pid()
Name = string()
Timeout = timeout()
FileInfo = file:file_info()
Error = {error, reason()}

Returns a file_info record from the file system object specified by Name or Handle. See file:read_file_info/2
for information about the record.

Ericsson AB. All Rights Reserved.: SSH | 91

ssh_sftp

Depending on the underlying OS:es links might be followed and info on the final file, directory etc is returned. See
read_link_info/2 on how to get information on links instead.

read_link(ChannelPid, Name) -> {ok, Target} | Error
read_link(ChannelPid, Name, Timeout) -> {ok, Target} | Error
Types:

ChannelPid = pid()
Name = Target = string()
Timeout = timeout()
Error = {error, reason()}

Reads the link target from the symbolic link specified by name.

read_link_info(ChannelPid, Name) -> {ok, FileInfo} | Error
read_link_info(ChannelPid, Name, Timeout) ->
 {ok, FileInfo} | Error
Types:

ChannelPid = pid()
Name = string()
FileInfo = file:file_info()
Timeout = timeout()
Error = {error, reason()}

Returns a file_info record from the symbolic link specified by Name or Handle. See file:read_link_info/2 for
information about the record.

rename(ChannelPid, OldName, NewName) -> ok | Error
rename(ChannelPid, OldName, NewName, Timeout) -> ok | Error
Types:

ChannelPid = pid()
OldName = NewName = string()
Timeout = timeout()
Error = {error, reason()}

Renames a file named OldName and gives it the name NewName.

start_channel(ConnectionRef) ->
start_channel(ConnectionRef, SftpOptions) -> {ok, ChannelPid} | Error
start_channel(Host) ->
start_channel(Host, Options) ->
start_channel(Host, Port, Options) ->
start_channel(TcpSocket) ->
start_channel(TcpSocket, Options) -> {ok, ChannelPid, ConnectionRef} | Error
Types:

Host = ssh:host()

Port = inet:port_number()

TcpSocket = ssh:open_socket()

92 | Ericsson AB. All Rights Reserved.: SSH

ssh_sftp

Options = [sftp_option() | ssh:client_option()]

SftpOptions = [sftp_option()]

ChannelPid = pid()

ConnectionRef = ssh:connection_ref()

Error = {error, reason()}

If no connection reference is provided, a connection is set up, and the new connection is returned. An SSH channel
process is started to handle the communication with the SFTP server. The returned pid for this process is to be used
as input to all other API functions in this module.

Options:

{timeout, timeout()}

There are two ways to set a timeout for the underlying ssh connection:

• If the connection timeout option connect_timeout is set, that value is used also for the negotiation
timeout and this option (timeout) is ignored.

• Otherwise, this option (timeout) is used as the negotiation timeout only and there is no connection
timeout set

The value defaults to infinity.

{sftp_vsn, integer()}

Desired SFTP protocol version. The actual version is the minimum of the desired version and the maximum
supported versions by the SFTP server.

All other options are directly passed to ssh:connect/3 or ignored if a connection is already provided.

stop_channel(ChannelPid) -> ok
Types:

ChannelPid = pid()
Stops an SFTP channel. Does not close the SSH connection. Use ssh:close/1 to close it.

write(ChannelPid, Handle, Data) -> ok | Error
write(ChannelPid, Handle, Data, Timeout) -> ok | Error
Types:

ChannelPid = pid()
Handle = term()
Data = iodata()
Timeout = timeout()
Error = {error, reason()}

Writes data to the file referenced by Handle. The file is to be opened with write or append flag. Returns ok
if successful or {error, reason()} otherwise.

write_file(ChannelPid, File, Data) -> ok | Error
write_file(ChannelPid, File, Data, Timeout) -> ok | Error
Types:

Ericsson AB. All Rights Reserved.: SSH | 93

ssh_sftp

ChannelPid = pid()
File = string()
Data = iodata()
Timeout = timeout()
Error = {error, reason()}

Writes a file to the server. The file is created if it does not exist but overwritten if it exists.

write_file_info(ChannelPid, Name, FileInfo) -> ok | Error
write_file_info(ChannelPid, Name, FileInfo, Timeout) -> ok | Error
Types:

ChannelPid = pid()
Name = string()
FileInfo = file:file_info()
Timeout = timeout()
Error = {error, reason()}

Writes file information from a file_info record to the file specified by Name. See file:write_file_info/[2,3] for
information about the record.

94 | Ericsson AB. All Rights Reserved.: SSH

ssh_sftpd

ssh_sftpd
Erlang module

Specifies a channel process to handle an SFTP subsystem.

Exports

subsystem_spec(Options) -> Spec
Types:

Options =
 [{cwd, string()} |
 {file_handler, CbMod | {CbMod, FileState}} |
 {max_files, integer()} |
 {root, string()} |
 {sftpd_vsn, integer()}]
Spec = {Name, {CbMod, Options}}
Name = string()
CbMod = atom()
FileState = term()

Is to be used together with ssh:daemon/[1,2,3]

The Name is "sftp" and CbMod is the name of the Erlang module implementing the subsystem using the
ssh_server_channel (replaces ssh_daemon_channel) behaviour.

Options:

cwd

Sets the initial current working directory for the server.

file_handler

Determines which module to call for accessing the file server. The default value is ssh_sftpd_file, which
uses the file and filelib APIs to access the standard OTP file server. This option can be used to plug in other
file servers.

max_files

The default value is 0, which means that there is no upper limit. If supplied, the number of filenames returned to
the SFTP client per READDIR request is limited to at most the given value.

root

Sets the SFTP root directory. Then the user cannot see any files above this root. If, for example, the root directory
is set to /tmp, then the user sees this directory as /. If the user then writes cd /etc, the user moves to /
tmp/etc.

sftpd_vsn

Sets the SFTP version to use. Defaults to 5. Version 6 is under development and limited.

Ericsson AB. All Rights Reserved.: SSH | 95

	SSH
	SSH User's Guide
	Introduction
	Scope and Purpose
	Prerequisites
	SSH Protocol Overview
	Transport Protocol
	Authentication Protocol
	Connection Protocol
	Channels

	Where to Find More Information

	Getting Started
	General Information
	Using the Erlang ssh Terminal Client
	Running an Erlang ssh Daemon
	One-Time Execution
	Erlang client contacting OS standard ssh server
	OS standard client and Erlang daemon (server)
	I/O from a function called in an Erlang ssh daemon
	Configuring the server's (daemon's) command execution

	SFTP Server
	SFTP Client
	SFTP Client with TAR Compression
	Basic example
	Example with encryption

	Creating a Subsystem

	Terminology
	General Information
	The term "user"
	In OpenSSH
	SSH password authentication
	SSH public key authentication
	The SSH server on UNIX/Linux/etc after a successful authentication

	In Erlang/OTP SSH
	Password authentication in Erlang SSH
	Public key authentication in Erlang SSH
	The Erlang/OTP SSH server after a successful authentication

	Configuration in SSH
	Introduction
	Options configuration
	Precedens
	Algorithm configuration
	The ssh:start/0 function
	Establishing a connection (ssh:connect et al) or starting a daemon (ssh:daemon)
	Example of modify_algorithms handling

	Configuring algorithms in SSH
	Introduction
	Basics of the ssh protocol's algorithms handling
	The SSH app's mechanism

	Replacing the default set: preferred_algorithms
	Example 1
	Example 2
	Example 3
	Example 4

	Modifying the default set: modify_algorithms
	Example 5
	Example 6
	Example 7
	Example 8
	Example 9

	Hardening
	Introduction
	Resilience to DoS attacks
	Counters and parallelism
	Timeouts

	Verifying the remote daemon (server) in an SSH client
	Verifying the remote client in a daemon (server)
	Hardening in the cryptographic area
	Algorithm selection
	Re-keying

	Hardening of the SSH protocol - both daemons and clients
	Disabling shell and exec in a daemon
	The id string

	Client connection options

	Reference Manual
	SSH
	ssh
	close/1
	connect/3
	connect/4
	connect/2
	connect/3
	connection_info/1
	connection_info/2
	set_sock_opts/2
	get_sock_opts/2
	daemon/1
	daemon/2
	daemon/3
	daemon_replace_options/2
	daemon_info/1
	daemon_info/2
	default_algorithms/0
	shell/1
	shell/2
	shell/3
	start/0
	start/1
	stop/0
	stop_daemon/1
	stop_daemon/2
	stop_daemon/3
	stop_listener/1
	stop_listener/2
	stop_listener/3
	tcpip_tunnel_from_server/5
	tcpip_tunnel_from_server/6
	tcpip_tunnel_to_server/5
	tcpip_tunnel_to_server/6
	hostkey_fingerprint/1
	hostkey_fingerprint/2
	hostkey_fingerprint/2

	ssh_client_channel
	call/2
	call/3
	cast/2
	enter_loop/1
	init/1
	reply/2
	start/4
	start_link/4
	Module:code_change/3
	Module:init/1
	Module:handle_call/3
	Module:handle_cast/2
	Module:handle_msg/2
	Module:handle_ssh_msg/2
	Module:terminate/2

	ssh_server_channel
	Module:init/1
	Module:handle_msg/2
	Module:handle_ssh_msg/2
	Module:terminate/2

	ssh_connection
	adjust_window/3
	close/2
	exec/4
	exit_status/3
	ptty_alloc/3
	ptty_alloc/4
	reply_request/4
	send/3
	send/4
	send/4
	send/5
	send_eof/2
	session_channel/2
	session_channel/4
	setenv/5
	shell/2
	subsystem/4

	ssh_client_key_api
	Module:add_host_key/3
	Module:add_host_key/4
	Module:is_host_key/4
	Module:is_host_key/5
	Module:user_key/2

	ssh_server_key_api
	Module:host_key/2
	Module:is_auth_key/3

	ssh_file
	host_key/2
	is_auth_key/3
	add_host_key/4
	is_host_key/5
	user_key/2
	decode/2
	encode/2
	extract_public_key/1

	ssh_agent
	add_host_key/3
	add_host_key/4
	is_host_key/4
	is_host_key/5
	user_key/2

	ssh_sftp
	apread/4
	apwrite/4
	aread/3
	awrite/3
	close/2
	close/3
	delete/2
	delete/3
	del_dir/2
	del_dir/3
	list_dir/2
	list_dir/3
	make_dir/2
	make_dir/3
	make_symlink/3
	make_symlink/4
	open/3
	open/4
	opendir/2
	opendir/3
	open_tar/3
	open_tar/4
	position/3
	position/4
	pread/4
	pread/5
	pwrite/4
	pwrite/5
	read/3
	read/4
	read_file/2
	read_file/3
	read_file_info/2
	read_file_info/3
	read_link/2
	read_link/3
	read_link_info/2
	read_link_info/3
	rename/3
	rename/4
	start_channel/1
	start_channel/2
	start_channel/1
	start_channel/2
	start_channel/3
	start_channel/1
	start_channel/2
	stop_channel/1
	write/3
	write/4
	write_file/3
	write_file/4
	write_file_info/3
	write_file_info/4

	ssh_sftpd
	subsystem_spec/1

